Publicado
Method to Obtain a Vector of Hyperparameters: Application in Bernoulli Trials
Método para obtener un vector de hiperparámetros: aplicación en ensayos Bernoulli
DOI:
https://doi.org/10.15446/rce.v43n2.81744Palabras clave:
Laplace’s Method, Bayesian Inference, System of Nonlinear Equations (en)Método de Laplace, Inferencia Bayesiana, Sistema de Ecuaciones no Lineales (es)
Descargas
The main difficulties when using the Bayesian approach are obtaining information from the specialist and obtaining hyperparameters values of the assumed probability distribution as representative of knowledge external to the data. In addition to the fact that a large part of the literature on this subject is characterized by considering prior conjugated distributions for the parameter of interest. An method is proposed to find the hyperparameters of a nonconjugated prior distribution. The following scenarios were considered for Bernoulli trials: four prior distributions (Beta, Kumaraswamy, Truncated Gamma and Truncated Weibull) and four scenarios for the generating process. Two necessary, but not sufficient conditions were identified to ensure the existence of a vector of values for the hyperparameter. The Truncated Weibull prior distribution performed the worst. The methodology was used to estimate the prevalence of two transmitted sexually infections in an Colombian indigenous community.
Las principales dificultades cuando se utiliza el enfoque Bayesiano son la obtención de información del especialista y la obtención de valores de los hiperparámetros de la distribución de probabilidad asumida como representante del conocimiento a priori. Adicionalmente, gran parte de la literatura sobre este tema considera distribuciones a priori conjugadas para el parámetro de interés. Un método es propuesto para encontrar los valores de los hiperparámetros de una distribución a priori no conjugada. Los siguientes escenarios son considerados para ensayos Bernoulli: cuatro distribuciones a priori (Beta, Kumaraswamy, Gamma Truncada y Weibull Truncada) y cuatro escenarios para el proceso generador. Dos condiciones necesarias, pero no suficientes fueron identificadas para asegurar la existencia de un vector de valores para los hiperparámetros. La distribución a priori Weibull Truncada fue la que peor desempeño presentó. La metodología fue utilizada para estimar la prevalencia de dos infecciones de transmisión sexual en una comunidad indígena de Colombia.
Referencias
Azevedo-Filho, A. & Shachter, R. D. (1994), Laplace’s method approximations for probabilistic inference in belief networks with continuous variables, in R. Lopez & D. Poole, eds, Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 28–36.
Bruijn, N. G. D. (1961), Asymptotic Methods in Analysis, 2 edn, CourierCorporation, Ámsterdam.
Chaloner, K. M. & Duncan, G. T. (1983), Assessment of a beta prior distribution: PM elicitation, Journal of the Royal Statistical Society: Series D (The Statistician) 32(1-2), 174–180.
Dennis-Jr, J. E. & Schnabel, R. B. (1996), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Siam.
Erdélyi, A. (1956), Asymptotic expansions, number 3, Courier Corporation. Flórez, A. & Correa, J. (2015), Elicitación de una distribución subjetiva del vector de parámetros π de la distribución multinomial, Tesis de maestría,Universidad Nacional de Colombia, Colombia.
Fowler & Floyd, J. (1995), Improving Survey Questions: Design and Evaluation, Vol. 38, Sage.
Garthwaite, P. H., Kadane, J. B. & OHagan, A. (2005), Statistical methods for eliciting probability distributions, Journal of the American Statistical Association 100(470), 680–701.
Hogarth, R. M. (1975), Cognitive processes and the assessment of subjective probability distributions, Journal of the American Statistical Association 70(350), 271–289.
Hogarth, R. M. (1987), Judgement and choice: The psychology of decision, 2 edn.
Kadane, J. B. & Winkler, R. L. (1988), Separating probability elicitation from utilities, Journal of the American Statistical Association 83(402), 357–363.
Kass, R. E. & Raftery, A. E. (1995), Bayes factors, Journal of the american statistical association 90(430), 773–795.
Laplace, P. S. (1773), Memoir on the probability of the causes of events, Statistical Science 1(3), 364–378.
Moala, F. A. & Penha, D. L. (2016), Elicitation methods for beta prior distribution, Revista Brasileira de Biometria 34(1), 49–62.
Murphy, A. H. & Winkler, R. L. (1974), Credible interval temperature forecasting: some experimental results, Monthly Weather Review 102(11), 784–794.
Penha, D. L. (2014), Inferência bayesiana não-paramétrica para elicitação da função de contabilidade. Universidade Estadual Paulista (UNESP).
Sindhu, T. N., Feroze, N. & Aslam, M. (2013), Bayesian analysis of the kumaraswamy distribution under failure censoring sampling scheme, International Journal of Advanced Science and Technology 51, 39–58.
Tierney, L. & Kadane, J. B. (1986), Accurate approximations for posterior moments and marginal densities, Journal of the American Statistical Association 81(393), 82–86.
Tovar, J. R. (2012), Eliciting beta prior distributions for binomial sampling, Revista Brasileira de Biometria 30(1), 159–172.
Tversky, A. & Kahneman, D. (1973), Availability: A heuristic for judging frequency and probability, Cognitive Psychology 2(5), 207–232.
Tversky, A. & Kahneman, D. (1974), Judgment under uncertainty: Heuristics and biases, Science 185(4157), 1124–1131.
Vidal, I. (2014), A bayesian analysis of the gumbel distribution: an application to extreme rainfall data, Stochastic Environmental Research and Risk Assessment 28(3), 571–582.
Winkler, R. L. (1967), The assessment of prior distributions in bayesian analysis, Journal of the American Statistical Association 62(319), 776–800.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2020 Revista Colombiana de Estadística

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).