Publicado
Spatial Econometric Models: A Bayesian Approach
Modelos econométricos espaciales: una aproximación bayesiana
DOI:
https://doi.org/10.15446/rce.v45n2.92390Palabras clave:
Spatial econometric models; SAR models; CAR models; Bayesian methods. (en)Modelos econométricos espaciales, Modelos SAR, Modelos CAR, Métodos bayesianos (es)
Descargas
In this paper we propose Bayesian methods to fit econometric regression models, including those where the variability is assumed to follow a regression structure. We formulate the main functions of the statistical R-package BSPADATA, developed according to the proposed methods to obtain posteriori parameter inferences. After that, we include results of simulated studies to illustrate the use of this package and the performance of the proposed methods. Finally, we provide studies to illustrate the applications of the models and compare our results with that obtained by maximum likelihood.
En este artículo proponemos métodos bayesianos para ajustar modelos de regresión econométrica, incluidos aquellos en los que la variabilidad sigue una estructura de regresión. Formulamos las principales funciones del Rpackage estadístico BSPADATA, desarrollado según los métodos propuestos para obtener inferencias de parámetros a posteriori. Luego, incluimos resultados de estudios de simulación para ilustrar el uso de este paquete y el desempeño de los métodos propuestos. Finalmente, proporcionamos estudios para ilustrar las aplicaciones de los modelos y comparamos nuestros resultados con los obtenidos por máxima verosimilitud.
Referencias
A., W. L. & A., G. C. (2004), Applied Spatial Statistics for Public Health Data, Wiley series in probability and statistics, 1 edn, John Wiley & Sons.
Anselin, L. (1980), 'Estimation methods for spatial autoregressive structures', Regional Science Dissertation and Monograph 8.
Anselin, L. (1982), 'A note on small sample properties of estimators in a first-order spatial autoregressive model', Environment and Planning A 14. DOI: https://doi.org/10.1068/a141023
Anselin, L. (1988), Spatial Econometrics: Methods and Models, Kluwer Academic, Boston. DOI: https://doi.org/10.1007/978-94-015-7799-1
Anselin, L. (2001), 'Spatial econometrics', A companion to theoretical econometrics pp. 310-330. DOI: https://doi.org/10.1002/9780470996249.ch15
Cepeda-Cuervo, E. (2001), 'Modelagem da Variabilidade em Modelos Lineales Generalizados', (Unpublished PhD thesis. Univerisidade Federal de Rio de Janeiro,Brazil) .
Cepeda-Cuervo, E. & Gamerman, D. (2000), 'Bayesian modeling of variance heterogeneity in normal regression models', Brazilian Journal of Probability and Statistics pp. 207-221.
Cepeda-Cuervo, E. & Gamerman, D. (2005), 'Bayesian methodology for modeling parameters in the two parameters exponential family', Revista Estadística 57, 93-105.
Gangnon, R. & Clayton, M. (1998), Bayesian Spatial Disease Clustering: An Application, Technical report, Department of Biostatistics, University of Wisconsin, Madison.
Hepple, L. W. (1979), 'Bayesian analysis of the linear model with spatial dependence', In Exploratory and explanatory statistical analysis of spatial dataSpringer, Dordrecht pp. 179-199. DOI: https://doi.org/10.1007/978-94-009-9233-7_7
LeSage, J. (1997), 'Bayesian Estimation of Spatial Autoregressive Models', Journal of Composite Materials 16(4), 928-940.
LeSage, J. & Pace, R. K. (2009), Introduction to Spatial Econometrics, Chapman & Hall/CRC, Boca Raton. DOI: https://doi.org/10.1201/9781420064254
Neath, A. A. & Cavanaugh, J. E. (2012), 'The bayesian information criterion: background, derivation, and applications', Wiley Interdisciplinary Reviews: Computational Statistics 4. DOI: https://doi.org/10.1002/wics.199
R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Waller, L. (1996), 'Statistical power and design of focused clustering studies', Statistics in Medicine (15), 765-782. DOI: https://doi.org/10.1002/(SICI)1097-0258(19960415)15:7/9<765::AID-SIM248>3.0.CO;2-N
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).