EFFECT OF THE DIRECTION OF AN EXTERNAL APPLIED MAGNETIC FIELD ON THE MICROMAGNETIC PROPERTIES OF Fe CUBOIDS
EFECTO DE LA DIRECCIÓN DE UN CAMPO MAGNÉTICO EXTERNO APLICADO SOBRE LAS PROPIEDADES MICROMAGNÉTICAS DE CUBOIDES DE Fe
DOI:
https://doi.org/10.15446/mo.n65.100454Keywords:
cuboid, micromagnetic program, finite differences, hysteresis loops (en)cuboide, programa micromagnético, diferencias finitas, ciclos de histéresis (es)
Downloads
We present the results of the study of the micromagnetic properties and the magnetization dynamics of a system of Fe cuboids with a square base of length L = 120 nm and thickness, t = 9 nm, under free boundary conditions as a function of the angle of an in-plane applied external magnetic field, for which we have used the Ubermag micromagnetic program that uses the OOMMF package and the finite difference method with a cell size, c = 3 nm. Hysteresis loops show that the coercive field (Hc) decreases with increasing azimuthal angle, from one easy-magnetizing axis to the other; in turn, the remanent magnetization (Mr) remains constant and magnetization diagrams indicate the presence of magnetic domains and walls in the (x, y) plane, accompanied by a magnetization component that points, both, outward and inward of the plane. This behavior is associated with the type of anisotropy and the aspect ratio of the cuboid. Finally, energy graphs show how the competition between the dipole (Ed), the exchange (Eex), anisotropy (EK), and Zeeman (EZ) energies occurs along the hysteresis loops.
Presentamos los resultados del estudio de las propiedades micromagnéticas y la dinámica de la magnetización de un sistema de cuboides de Fe de base cuadrada de longitud L = 120 nm y espesor t = 9 nm, bajo condiciones de frontera libre en función del ángulo de un campo magnético externo aplicado en el plano, para lo cual hemos utilizado el programa micromagnético Ubermag, que utiliza el paquete OOMMF y el método de diferencias finitas con un tamaño de celda c = 3 nm. Los ciclos de histéresis muestran que el campo coercitivo (Hc) disminuye con el aumento del ángulo azimutal, desde un eje de fácil magnetización hasta el otro; a su vez, la magnetización remanente (Mr) permanece constante y los diagramas de magnetización indican la presencia de dominios y paredes de dominio magnético en el plano (x, y), acompañados de una componente de magnetización que apunta tanto hacia fuera como hacia dentro del plano. Este comportamiento está asociado al tipo de anisotropía y a la relación de aspecto del cuboide. Por último, los gráficos de energía muestran cómo se produce la competencia entre las energías dipolar (Ed), intercambio (Eex), anisotropía (EK) y Zeeman (EZ) a lo largo de los ciclos de histéresis.
References
U. Khan, A. Akbar, U. Ahmad, S. Riaz, and S. Naseem, Materialstoday: proceedings 2, 5421 (2015). https://www.sciencedirect.com/science/article/pii/S2214785315010214?via%3Dihub DOI: https://doi.org/10.1016/j.matpr.2015.11.062
S. Mulenko, Y. N. Petrov, and N. Gorbachuk, Appl. Surf. Sci. 258, 9186 (2012). https://www.sciencedirect.com/science/article/abs/pii/S016943321200846X?via%3Dihub DOI: https://doi.org/10.1016/j.apsusc.2012.05.002
S. Rani, S. C. Roy, N. Karar, and M. Bhatnagar, Solid State Commun. 141, 214 (2007). https://www.sciencedirect.com/science/article/abs/pii/S0038109806009343?via%3Dihub DOI: https://doi.org/10.1016/j.ssc.2006.10.036
C. Luna and R. Mendoza, Ingenierías 16, 6 (2013). http://eprints.uanl.mx/3542/
C. Blanco, Magnetic interactions in rare earth-transition metal systems and their study by synchrotron radiation techniques. (Tesis - Repositorio Institucional de la Universidad de Ovi, 2017) p. 212. https://digibuo.uniovi.es/dspace/handle/10651/44970
K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Appl. Phys. Lett. 78, 3848 (2001). https://aip.scitation.org/doi/10.1063/1.1377850 DOI: https://doi.org/10.1063/1.1377850
X.-T. Tang, G.-C. Wang, and M. Shima, IEEE T. Magn. 42, 2975 (2006). https://ieeexplore.ieee.org/document/1704501 DOI: https://doi.org/10.1109/TMAG.2006.878399
M. B. Hahn, J. Phys. Commun. 3, 075009 (2019). https://iopscience.iop.org/article/10.1088/2399-6528/ab31e6 DOI: https://doi.org/10.1088/2399-6528/ab31e6
G. S. Abo, Y. Hong, J. Park, J. Lee, W. Lee, and B. Choi, IEEE T. Magn. 49, 4937 (2013). https://ieeexplore.ieee.org/document/6497624 DOI: https://doi.org/10.1109/TMAG.2013.2258028
M. J. Donahue and M. Donahue, OOMMF user’s guide, version 1.0 (NIST, 1999). https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir6376.pdf DOI: https://doi.org/10.6028/NIST.IR.6376
L. Landau and E. Lifshits, Ukr. J. Phys. 56, 51 (2008). https://verga.cpt.univ-mrs.fr/pdfs/Landau-1935fk.pdf
M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, and J. Fidler, J. Appl. Phys. 97, 10E301 (2005). https://aip.scitation.org/doi/10.1063/1.1846411 DOI: https://doi.org/10.1063/1.1846411
E. A. Jagla, Phys. Rev. B 72, 094406 (2005). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.094406 DOI: https://doi.org/10.1103/PhysRevB.72.094406
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.