Published

2022-07-05

DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA)

DETERMINACIÓN DEL COEFICIENTE DE TEMPERATURA DE VISCOSIDAD (β) Y EL ÍNDICE DE PSEUDOPLASTICIDAD (n) DEL POLI(ÁCIDO LÁCTICO) (PLA)

Authors

  • Carlos B. B. Luna Federal University of Campina Grande, Academic Unit of Materials Engineering, Polymer Processing Laboratory - PPL, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba. https://orcid.org/0000-0002-2441-7439
  • Eduardo S. B. Ferreira Federal University of Campina Grande, Academic Unit of Materials Engineering, Polymer Processing Laboratory - PPL, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba. https://orcid.org/0000-0002-2670-2794
  • Fernanda M. Sousa Federal University of Campina Grande, Academic Unit of Materials Engineering, Polymer Processing Laboratory - PPL, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba. https://orcid.org/0000-0002-0208-2666
  • Emanuel P. Nascimento Federal University of Campina Grande, Academic Unit of Materials Engineering, Polymer Processing Laboratory - PPL, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba. https://orcid.org/0000-0003-1294-8897
  • Edcleide M. Araújo Federal University of Campina Grande, Academic Unit of Materials Engineering, Polymer Processing Laboratory - PPL, Av. Aprígio Veloso, 882 - Bodocongó, 58429-900, Campina Grande - Paraíba.
  • Dayanne D. Souza Department of Mechanical Engineering, Federal University of Pernambuco, DEMEC/CCT/UFPE, Recife - Pernambuco.
  • Elieber B. Bezerra Department of Materials Engineering, Federal University of Paraíba, Cidade Universitária, 58051-900, João Pessoa, PB. https://orcid.org/0000-0003-1637-7761
  • Renate M. R. Wellen Department of Materials Engineering, Federal University of Paraíba, Cidade Universitária, 58051-900, João Pessoa, PB.

Poly(lactic acid) (PLA) is one of the most important ecological thermoplastics due to its good mechanical properties. In light of this, investigations related to the effects of PLA processing parameters are important as they affect the final product performance. This work aimed to determine the viscosity-temperature coefficient (β) and pseudoplastic index (n) of PLA and estimate its degradation rate during processing using an internal mixer. The viscosity coefficient was determined applying different processing temperatures at the same rotors rotation rate, which allowed estimating β = 0.048 C−1. PLA’s pseudoplastic index (n) under the tested conditions suggested a value of approximately 0.71. PLA’s degradation rate was around 4% under rotor rate of 120 rpm and temperature of 190 C.

El poli(ácido láctico) (PLA) es uno de los termoplásticos ecológicos más importantes en la actualidad, debido a sus buenas propiedades mecánicas. En vista de esto, las investigaciones sobre los efectos de los parámetros de procesamiento de PLA son importantes, ya que afectan el rendimiento final del producto. Este trabajo tuvo como objetivo determinar el coeficiente de sensibilidad de la viscosidad con la temperatura (β) y el índice de plasticidad (n) del PLA, así como estimar su tasa de degradación durante el procesamiento en un mezclador interno. Para el coeficiente de viscosidad del PLA se adoptaron diferentes temperaturas de procesamiento y la misma velocidad de rotación de los rotores, lo que permitió estimar β = 0,048 °C-1. El índice de plasticidad (n) del PLA en las condiciones ensayadas sugirió un valor de aproximadamente 0,71. Se encontró que la tasa de degradación que sufrió el PLA fue de alrededor del 4%, utilizando una rotación del rotor de 120 rpm y una temperatura de 190 °C.

References

M. Shamsuyeva and H. J. Endres, Composites Part C: Open Access, 6(10), 100168 (2021). https://doi.org/10.1016/j.jcomc.2021.100168

C. B. B. Luna, E. S. B. Ferreira, L. J. M. D. Silva, W. A. Silva, E. M. Araújo and J. B. C. A, Materials Research Express, 6(12), 125319 (2019). https://doi.org/10.1088/2053-1591/ab56b2

M. G. Davidson, R. A. Furlong and M. C. Mcmanus. Journal of Cleaner Production, 293(4), 126163 (2021). https://doi.org/10.1016/j.jclepro.2021.126163

Z. O. Schyns and M. P. Shaver, Macromolecular Rapid Communications, 42(3), 2000415 (2021). https://doi.org/10.1002/marc.202000415

C. B. B. Luna, D. D. Siqueira, E. S. B. Ferreira, W. A. Silva, J. A. S. Nogueira and E. M. Arújo, Sustainability, 12(13), 5272 (2020). https://doi.org/10.3390/su12135272

E. S. B. Ferreira, C. B. B. Luna, D. D. Siqueira, E. A. S. Filho, E. M. Araújo and R. M. R. Wellen, Sustainability, 13(21), 12157 (2021). https://doi.org/10.3390/su132112157

A. Dey, P. Jali, A. K. Behera, A. B. Das and C. Pradhan, Polymer Composites, 41(4), 1428-1434 (2020). https://doi.org/10.1002/pc.25466

S. G. Sankaravel, R. B. Syed and V. Manivachakan, Polymer Composites, 43(1), 173-186 (2022). https://doi.org/10.1002/pc.26365

J. Santos, P. K. Penumakala and R. B. Adusumalli, Polymer Composites, 42(7), 3231-3242 (2021). https://doi.org/10.1002/pc.26053

V. A. Yiga, M. Lubwama, S. Pagel, J. Benz, P. W. Olupot and C. Bonten, Polymer Composites, 42(1), 15-44 (2021). https://doi.org/10.1002/pc.25835

W. A. Silva, C. B. B. Luna, J. B. C. A. Melo, E. M. Araújo, E. A. S. Filho and R. N. C. Journal of Polymers and the Environment, 29, 2932–2951 (2021). https://doi.org/10.1007/s10924-021-02076-8

J. O. Akindoyo, M. D. H. Beg, S. Ghazali, H. P. Heim, M. Feldmann and M. Mariatti, Polymer Composites, 42(1), 57-69 (2021). https://doi.org/10.1002/pc.25807

E. A. S. Filho, C. B. B. Luna, A. L. Silva, E. S. B. Ferreira, E. M. Araújo, A. C. F. M. Costa, MOMENTO, (64), 66–82 (2022). https://doi.org/10.15446/mo.n64.99725

V. A. D. Marinho, T. G. Almeida, L. H. Carvalho and E. L. Canedo, Revista Eletrônica de Materiais e Processos, 13(1), 37-41 (2018). http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/647

J. C. C. Lima, J. P. Araújo, P. Agrawal and T. J. A. Mélo, Revista Eletrônica de Materiais e Processos, 11(1), 10–17 (2016). http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/497

J. D. V. Barbosa, J. B. Azevedo, E. M. Araújo, B. A. S. Machado, K. V. S. Hodel and T. J. A. Mélo, Polímeros, 29(3), e2019045 (2019). https://doi.org/10.1590/0104-1428.09018

J. D. Viana, E. M. Araújo and T. J. A. Mélo, Revista Eletrônica de Materiais e Processos, 7(1), 20 – 25 (2012). http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/242

E. A. S. Filho, C. B. B. Luna, D. D. Siqueira, E. S. B. Ferreira and E. M. Araújo, Polymers, 14(1), 136 (2022). https://doi.org/10.3390/polym14010136

A. C. S. Oliveira and S. V. Borges, Revista Eletrônica de Materiais e Processos, 15(1), 1-10 (2020). http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/713

M. Maiza, M. T. Benaniba, G. Quintard and V. M. Nageotte, Polímeros: Ciência e Tecnologia, 25(6), 581-590 (2015). http://dx.doi.org/10.1590/0104-1428.1986

C. B. B. Luna, D. D. Siqueira, E. M. Araújo and R. M. R. Wellen, MOMENTO, (62), 1–17 (2021). https://doi.org/10.15446/mo.n62.89099

J. P. Araújo, P. Agrawal and T. J. A. Mélo Revista Eletrônica de Materiais e Processos, 10(3), 118–127 (2015). http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/475

P. Lohrasbi and J. K. Yeganeh, Polymers for Advanced Technologies, 32(11), 4326-4339 (2021). https://doi.org/10.1002/pat.5435

M. E. M. Duarte, I. A. E. Moreno, P. E. G. Casillas and A. V. Rios, Polymers, 13(24), 4279 (2021). https://doi.org/10.3390/polym13244279

M. Maroufkhani, A. Katbab, H. Bizhani and J. Zhang, Polymer, 217(3), 123439 (2021). https://doi.org/10.1016/j.polymer.2021.123439

E. S. B. Ferreira, C. B. B. Luna, D. D. Siqueira, E. M. Araújo, D. C. França and R. M. R. Wellen, Journal of Polymers and the Environment, 30(2), 541–554 (2022). https://doi.org/10.1007/s10924-021-02220-4

R. B. Pereira and A. R. Morales, Polímeros, 24(2), 198-202 (2014). https://doi.org/10.4322/polimeros.2014.042

N. Zaldua, A. Mugica, M. Zubitur, A. Iturrospe, A. Arbe, G. Lore, J. M. Raquez, P. Dubois and A. J. Muller, CrystEngComm, 18, 9334-9344 (2016). https://doi.org/10.1039/C6CE02005D

P. Borysiuk, P. Boruszewski, T. Auriga, L. Danecki, A. Auriga, K. Rybak and M. Nowacka, Journal of Materials Science, 56, 9196–9208 (2021). https://doi.org/10.1007/s10853-021-05901-6

B. M. Trinh, E. O. Ogunsona, T. H. Mekonnen, Composites Part A: Applied Science and Manufacturing, 140, 106150 (2021). https://doi.org/10.1016/j.compositesa.2020.106150

N. Tripathi, M. Misra, A. K. Mohanty, ACS Engineering Au, 1,7–38 (2021). https://doi.org/10.1021/acsengineeringau.1c00011

M. Maroufkhani, A. Katbab, H. Bizhani, J. Zhang, Polymer, 217, 123439 (2021). https://doi.org/10.1016/j.polymer.2021.123439

J. M.F. Silva and B G. Soares, Polymer Testing, 93, 106889 (2021). https://doi.org/10.1016/j.polymertesting.2020.106889

S. Su, Materials Research Express, 9, 025308 (2022). https://doi.org/10.1088/2053-1591/ac55c7

C. B. B. Luna, D. D. Siqueira, E. S. B. Ferreira, E. M. Araújo and R. M. R. Wellen, Journal of Elastomers & Plastics, 53(8), 1045-1062 (2021). https://doi.org/10.1177/00952443211015345

J. D. Ambrósio, L. A. Pessan, N. M. Larocca and E. H. Júnior, Polímeros, 20(4), 315-321 (2010). https://doi.org/10.1590/S0104-14282010005000051

C. B. B. Barreto, D. D. Siqueira, and et al., J. Vib. Eng. Technol. 27, 736 (2021). https://doi.org/10.1002/vnl.21846

T. S. Alves, J. E. S. Neto, S. M. L. Silva, L. H. Carvalho and E. L. Canedo, Polymer Testing, 50(4), 94-100 (2016). https://doi.org/10.1016/j.polymertesting.2016.01.002

T. G. Almeida, J. E. S. Neto, A. R. M. Costa, A. S. Silva, L. H. Carvalho and E. L. Canedo, Polymer Testing, 55(10), 204-211, 2016. https://doi.org/10.1016/j.polymertesting.2016.08.018

E. L. Canedo, Processamento de Pol´ımeros no Misturador Interno de Laboratòrio 2aEd (PPGCEMat-UFCG: Campina Grande, PB, 2017). https://doi.org/10.1590/1980-5373-MR-2020-0238

D. S. C. Andrade, E. L. Canedo, L. H. Carvalho, R. Barbosa, and T. Alves, Mater. Res. 24, e20200238 (2021).https://doi.org/10.1590/1980-5373-MR-2020-0238

J. C. Lima, J. C. Sousa, S. A. Arruda, Y. M. B. Almeida, and E. L. Canedo, Polym. Comp. 40, E678 (2019). https://doi.org/10.1002/pc.24951

L. Reul, C. Pereira, F. Sousa, R. Santos, L. Carvalho, and E. Canedo, Polym. Comp. 40, E540 (2018). https://doi.org/10.1002/pc.24861

E. B. Bezerra, D. C. Fran¸ca, D. D. S. Morais, E. S. B. Ferreira, A. E. M., and R. R.Wellen, Matéria (Rio J.) 22, e11798 (2017). https://doi.org/10.1590/S1517-707620170001.0130

F. M. Sousa, A. R. M. Costa, and et al., Polym. Bull. 76, 1573–1593 (2018). https://doi.org/10.1007/s00289-018-2428-5

A. R. M. Costa, L. T. A. Reul, and et al., Polym. Test. 69, 266 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.031

L. T. Reul, L. H. Carvalho, and E. L. Canedo, REMAP 12, 174 (2017). http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/629

How to Cite

APA

Luna, C. B. B. ., Ferreira, E. S. B. ., Sousa, F. M., Nascimento, E. P., Araújo, E. M., Souza, D. D., Bezerra, E. B. & Wellen, R. M. R. (2022). DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA). MOMENTO, (65), 25–38. https://doi.org/10.15446/mo.n65.102254

ACM

[1]
Luna, C.B.B. , Ferreira, E.S.B. , Sousa, F.M., Nascimento, E.P., Araújo, E.M., Souza, D.D., Bezerra, E.B. and Wellen, R.M.R. 2022. DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA). MOMENTO. 65 (Jul. 2022), 25–38. DOI:https://doi.org/10.15446/mo.n65.102254.

ACS

(1)
Luna, C. B. B. .; Ferreira, E. S. B. .; Sousa, F. M.; Nascimento, E. P.; Araújo, E. M.; Souza, D. D.; Bezerra, E. B.; Wellen, R. M. R. DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA). Momento 2022, 25-38.

ABNT

LUNA, C. B. B. .; FERREIRA, E. S. B. .; SOUSA, F. M.; NASCIMENTO, E. P.; ARAÚJO, E. M.; SOUZA, D. D.; BEZERRA, E. B.; WELLEN, R. M. R. DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA). MOMENTO, [S. l.], n. 65, p. 25–38, 2022. DOI: 10.15446/mo.n65.102254. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/102254. Acesso em: 27 dec. 2025.

Chicago

Luna, Carlos B. B., Eduardo S. B. Ferreira, Fernanda M. Sousa, Emanuel P. Nascimento, Edcleide M. Araújo, Dayanne D. Souza, Elieber B. Bezerra, and Renate M. R. Wellen. 2022. “DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA)”. MOMENTO, no. 65 (July):25-38. https://doi.org/10.15446/mo.n65.102254.

Harvard

Luna, C. B. B. ., Ferreira, E. S. B. ., Sousa, F. M., Nascimento, E. P., Araújo, E. M., Souza, D. D., Bezerra, E. B. and Wellen, R. M. R. (2022) “DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA)”, MOMENTO, (65), pp. 25–38. doi: 10.15446/mo.n65.102254.

IEEE

[1]
C. B. B. . Luna, “DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA)”, Momento, no. 65, pp. 25–38, Jul. 2022.

MLA

Luna, C. B. B. ., E. S. B. . Ferreira, F. M. Sousa, E. P. Nascimento, E. M. Araújo, D. D. Souza, E. B. Bezerra, and R. M. R. Wellen. “DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA)”. MOMENTO, no. 65, July 2022, pp. 25-38, doi:10.15446/mo.n65.102254.

Turabian

Luna, Carlos B. B., Eduardo S. B. Ferreira, Fernanda M. Sousa, Emanuel P. Nascimento, Edcleide M. Araújo, Dayanne D. Souza, Elieber B. Bezerra, and Renate M. R. Wellen. “DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA)”. MOMENTO, no. 65 (July 5, 2022): 25–38. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/102254.

Vancouver

1.
Luna CBB, Ferreira ESB, Sousa FM, Nascimento EP, Araújo EM, Souza DD, Bezerra EB, Wellen RMR. DETERMINATION OF THE VISCOSITY TEMPERATURE COEFFICIENT (β) AND PSEUDOPLASTIC INDEX (n) OF POLY(LACTID ACID) (PLA). Momento [Internet]. 2022 Jul. 5 [cited 2025 Dec. 27];(65):25-38. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/102254

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Carlos Bruno Barreto Luna, José Vinícius Melo Barreto, Mário Alberto de Albuquerque Filho, Elieber Barros Bezerra, Flávio Urbano da Silva, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2025). Flat biofilms extrusion of poly(lactic acid)/poly(butylene adipate‐co‐terephthalate) grafted with glycidyl methacrylate blends: Toward ecological packaging for sustainability. Journal of Applied Polymer Science, 142(6) https://doi.org/10.1002/app.56456.

2. Rixiang Quan, Sergio Cantero Chinchilla, Fengyuan Liu. (2025). Investigation of the Effects of 3D Printing Parameters on the Mechanical Properties of Bone Scaffolds: Experimental Study Integrated with Artificial Neural Networks. Bioengineering, 12(3), p.315. https://doi.org/10.3390/bioengineering12030315.

3. Carlos Bruno Barreto Luna, Fabiano Santana da Silva, Eduardo da Silva Barbosa Ferreira, Adriano Lima da Silva, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2024). Transforming vulcanized styrene–butadiene waste into valuable raw material: an opportunity for high-impact polypropylene production. Polymer Bulletin, 81(1), p.423. https://doi.org/10.1007/s00289-023-04729-1.

4. Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Anna Raffaela de Matos Costa, Yeda Medeiros Bastos de Almeida, João Baptista da Costa Agra de Melo, Edcleide Maria Araújo. (2023). Toward Reactive Processing of Polyamide 6 Based Blends with Polyethylene Grafted with Maleic Anhydride and Acrylic Acid: Effect of Functionalization Degree. Macromolecular Reaction Engineering, 17(5) https://doi.org/10.1002/mren.202300031.

Dimensions

PlumX

Article abstract page views

534

Downloads

Download data is not yet available.