Published

2022-07-05

RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS

RED DE SENSORES MULTIFUNCIONAL BASADA EN RASPBERRY PI PARA LA DETECCIÓN DE MOVIMIENTO NO LINEAL EN LABORATORIOS USANDO MEMS

DOI:

https://doi.org/10.15446/mo.n65.102641

Keywords:

motion sensors, Lagrangean solution, Raspberry Pi, nonlinear measurement system, MEMS (en)
sensores de movimiento, solución Lagrangiana, Raspberry Pi, sistema de medición no lineal, MEMS (es)

Downloads

Authors

Detecting and measuring the nonlinear evolution of a classical system is a complex process. In this work, the nonlinear evolution of a lab-level system is measured using the Raspberry Pi-based MEMS sensor network system. The evolution and various results of nonlinear systems were compared theoretical and experimentally.

Detectar y medir la evolución no lineal de un sistema clásico es un proceso complejo. En este trabajo, se mide la evolución no lineal de un sistema a nivel de laboratorio utilizando el sistema de red de sensores MEMS basado en Raspberry Pi. La evolución y varios resultados de sistemas no lineales fueron comparados teórica y experimentalmente.

References

E. Upton and G. Halfacree, Meet the raspberry Pi (John Wiley & Sons, 2012). https://books.google.co.in/books?hl=en&lr=&id=C0bZSmKnRK4C&oi=fnd&pg=PT8&dq=Meet+the+raspberry+Pi&ots=LnvXJ9P1Gl&sig=hD0geYnAfRu0fDALbhm_9gspg6M#v=onepage&q=Meet%20the%20raspberry%20Pi&f=false

S. E. Mathe, M. Bandaru, H. K. Kondaveeti, S. Vappangi, and G. S. Rao, in 2022 International Conference on Innovative Trends in Information Technology (ICITIIT) (IEEE, 2022) pp. 1–7. https://ieeexplore.ieee.org/abstract/document/9744152

S. Sengan, O. I. Khalaf, S. Priyadarsini, D. K. Sharma, K. Amarendra, and A. A. Hamad, Int. J. of Reliable and Quality E-Healthcare (IJRQEH) 11, 1 (2022). https://www.igi-global.com/article/smart-healthcare-security-device-on-medical-iot-using-raspberry-pi/289177 DOI: https://doi.org/10.4018/IJRQEH.289177

S. Naik and E. Sudarshan, ARPN J. Eng. Appl. Sci. 14, 872 (2019). http://www.arpnjournals.org/jeas/research_papers/rp_2019/jeas_0219_7629.pdf

S. Vappangi, N. K. Penjarla, S. E. Mathe, and H. K. Kondaveeti, in 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP) (IEEE, 2022) pp. 1–6. https://ieeexplore.ieee.org/abstract/document/9760691

Z. Didi, I. El Azami, and E. M. Boumait, in International Conference on Digital Technologies and Applications (Springer, 2022) pp. 427–434. https://link.springer.com/chapter/10.1007/978-3-031-02447-4_44 DOI: https://doi.org/10.1007/978-3-031-02447-4_44

D. K. Dewangan and S. P. Sahu, IEEE sensors J. 21, 3570 (2020). https://ieeexplore.ieee.org/document/9206567 DOI: https://doi.org/10.1109/JSEN.2020.3027097

S. Natarajan, A. Deepika, I. Pradeeba, and R. Chandramohan, Int Research J Eng and Technol, Trichy 4, 254 (2017). https://www.researchgate.net/publication/353636552_Low_Cost_Temperature_Logging_System_using_Raspberry_Pi

N. Shriethar, P. Letchoumanane, and S. Solai, Momento , 1 (2022). https://revistas.unal.edu.co/index.php/momento/article/view/97787 DOI: https://doi.org/10.15446/mo.n64.97787

M. Gad-el Hak, The MEMS handbook (CRC press, 2001). https://www.researchgate.net/publication/260699437_MEMS_handbook

M. Gad-el Hak, The MEMS handbook (CRC press, 2001). https://www.researchgate.net/publication/260699437_MEMS_handbook DOI: https://doi.org/10.1201/9781420050905

Y. Tang and S. Lin, in IOP Conference Series: Earth and Environmental Science, Vol. 621 (IOP Publishing, 2021) p. 012151. https://iopscience.iop.org/article/10.1088/1755-1315/621/1/012151 DOI: https://doi.org/10.1088/1755-1315/621/1/012151

S. Bommannan, C. Vineeth, U. Mylavarapu, S. Boyanapalli, and S. Vidhya, in Proceedings of International Conference on Intelligent Computing, Information and Control Systems (Springer, 2021) pp. 39–55. https://link.springer.com/chapter/10.1007/978-981-15-8443-5_4 DOI: https://doi.org/10.1007/978-981-15-8443-5_4

Q. Zhao, Y. Fu, Z. Liu, Y. Xu, and X. Liu, in Automatic Control, Mechatronics and Industrial Engineering: Proceedings of the International Conference on Automatic Control, Mechatronics and Industrial Engineering (ACMIE 2018), October 29-31, 2018, Suzhou, China (CRC Press, 2019) p. 197. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429468605-27/improved-attitude-estimation-algorithm-based-mpu9250-quadrotor-zhao-fu-liu-xu-liu DOI: https://doi.org/10.1201/9780429468605-27

J. Zheng, Q. Minhui, K. Xiang, and M. Pang, in International Conference on Intelligent Robotics and Applications (Springer, 2017) pp. 494–504. https://link.springer.com/chapter/10.1007/978-3-319-65289-4_47 DOI: https://doi.org/10.1007/978-3-319-65289-4_47

Y. Zhang and W. Cai, in 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT) (IEEE, 2021) pp. 1039–1043. https://ieeexplore.ieee.org/document/9633673

W. Donat and C. Krause, Learn Raspberry Pi Programming with Python (Springer, 2014). https://link.springer.com/book/10.1007/978-1-4842-3769-4

W. Donat and C. Krause, Learn Raspberry Pi Programming with Python (Springer, 2014). https://link.springer.com/book/10.1007/978-1-4842-3769-4 DOI: https://doi.org/10.1007/978-1-4302-6425-5

T. Cox, Raspberry Pi Cookbook for python programmers (Packt Publishing Ltd, 2014). https://library.villanova.edu/Find/Record/2618825

S. Kelly, Python, PyGame, and Raspberry Pi Game Development (Springer, 2019). https://link.springer.com/book/10.1007/978-1-4842-4533-0 DOI: https://doi.org/10.1007/978-1-4842-4533-0

J. Menegazzo and A. Wangenheim, “MPU-9250 Sensors Data Collect,” (2020). https://zenodo.org/record/3960442#.YsMtynbMKUk

H. A. Kastrup, Physics Reports 101, 1 (1983). https://www.sciencedirect.com/science/article/abs/pii/0370157383900376 DOI: https://doi.org/10.1016/0370-1573(83)90037-6

How to Cite

APA

Shriethar, N., Chandramohan, N. . and Rathinam, C. (2022). RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS. MOMENTO, (65), 52–64. https://doi.org/10.15446/mo.n65.102641

ACM

[1]
Shriethar, N., Chandramohan, N. and Rathinam, C. 2022. RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS. MOMENTO. 65 (Jul. 2022), 52–64. DOI:https://doi.org/10.15446/mo.n65.102641.

ACS

(1)
Shriethar, N.; Chandramohan, N. .; Rathinam, C. RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS. Momento 2022, 52-64.

ABNT

SHRIETHAR, N.; CHANDRAMOHAN, N. .; RATHINAM, C. RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS. MOMENTO, [S. l.], n. 65, p. 52–64, 2022. DOI: 10.15446/mo.n65.102641. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/102641. Acesso em: 25 mar. 2025.

Chicago

Shriethar, Natarajan, Narmadha Chandramohan, and Chandramohan Rathinam. 2022. “RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS”. MOMENTO, no. 65 (July):52-64. https://doi.org/10.15446/mo.n65.102641.

Harvard

Shriethar, N., Chandramohan, N. . and Rathinam, C. (2022) “RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS”, MOMENTO, (65), pp. 52–64. doi: 10.15446/mo.n65.102641.

IEEE

[1]
N. Shriethar, N. . Chandramohan, and C. Rathinam, “RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS”, Momento, no. 65, pp. 52–64, Jul. 2022.

MLA

Shriethar, N., N. . Chandramohan, and C. Rathinam. “RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS”. MOMENTO, no. 65, July 2022, pp. 52-64, doi:10.15446/mo.n65.102641.

Turabian

Shriethar, Natarajan, Narmadha Chandramohan, and Chandramohan Rathinam. “RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS”. MOMENTO, no. 65 (July 5, 2022): 52–64. Accessed March 25, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/102641.

Vancouver

1.
Shriethar N, Chandramohan N, Rathinam C. RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS. Momento [Internet]. 2022 Jul. 5 [cited 2025 Mar. 25];(65):52-64. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/102641

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Edwin Christian Becerra-Alvarez, Juan Jose Raygoza-Panduro, Jorge Rivera-Dominguez, Susana Ortega-Cisneros, José Luis González-Vidal. (2023). ForEmb: A Forth-Inspired, Real-Time Interpreter for Embedded Systems. 2023 12th International Conference On Software Process Improvement (CIMPS). , p.215. https://doi.org/10.1109/CIMPS61323.2023.10528835.

Dimensions

PlumX

Article abstract page views

359

Downloads

Download data is not yet available.