Published

2022-07-05

FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA

NATURAL FIBERS AS REINFORCEMENT IN POLYMER MATRIX COMPOSITE MATERIALS

DOI:

https://doi.org/10.15446/mo.n65.103151

Keywords:

fibras naturales, materiales compuestos, tratamientos de compatibilización, guadua angustifolia (es)
natural fibers, composite materials, compatibilization treatments, Guadua angustifolia (en)

Authors

  • Patricia Luna Departamento de Ingeniería Civil y Agrícola, Facultad de Ingeniería, Universidad Nacional de Colombia. Bogotá. https://orcid.org/0000-0003-3226-2411
  • Juan M. Lizarazo-Marriaga Departamento de Ingeniería Civil y Agrícola, Facultad de Ingeniería, Universidad Nacional de Colombia. Bogotá. https://orcid.org/0000-0002-6543-1640
Debido a la crisis ambiental que atraviesa la humanidad, actualmente se vienen realizando diversas investigaciones encaminadas a encontrar alternativas sustentables para diferentes procesos industriales. En este sentido, en la actualidad las fibras naturales se han convertido en un recurso atractivo para diferentes industrias, dentro de la que se puede destacar la de los materiales compuestos. Las fibras naturales son recursos renovables que pueden ser obtenidos de animales o vegetales, que presentan múltiples ventajas como son su bajo costo y peso, biodegradabilidad y altas propiedades específicas. Este documento constituye una revisión de algunos aspectos relevantes a tener en cuenta para el empleo de fibras naturales en la industria de los compuestos, como son su origen, composición química, metodologías de extracción, propiedades físicas y mecánicas, y algunos tratamientos necesarios para mejorar la adherencia cuando se emplean como refuerzo de matrices poliméricas. Además, se destacan algunos de los resultados obtenidos en una investigación enfocada a proporcionar aspectos técnicos para el empleo de fibras de bambú Guadua angustifolia como material de refuerzo. Cabe resaltar que la revisión presentada en este documento se centra en fibras de origen vegetal.
 
 
 

Due to the environmental crisis that humanity is going through, several researches are currently being carried out to find sustainable alternatives for different industrial processes. In this sense, natural fibers have become a valuable resource for different industries, including the composite industry. Natural fibers are renewable resources that can be obtained from animals or plants and have multiple advantages, such as low cost and weight, biodegradability and high specific properties. This paper is a review of some relevant aspects to consider in the use of natural fibers in the composites industry, such as their origin, chemical composition, extraction methodology, physical and mechanical properties, and some necessary treatments to improve adhesion when they are used as reinforcement of polymeric matrices. In addition, some of the results obtained in a research focused on providing technical aspects for the use of bamboo fibers guadua angustifolia as reinforcement material are highlighted. It should be noted that the review presented in this paper focuses on plant-based fibers.

References

M. F. Ashby, Materials Selection in Mechanical Design, 4th ed. (Butterworth-Heinemann, Oxford, 2011) pp. 461–477. https://www.sciencedirect.com/science/article/pii/B9781856176637000163?via%3Dihub DOI: https://doi.org/10.1016/B978-1-85617-663-7.00016-3

M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, 2008). https://books.google.com.co/books?id=v-_oAwAAQBAJ DOI: https://doi.org/10.1017/CBO9780511810947

M. D. Isaac and O. Ishai, Engineering Mechanics of Composite Materials, 2nd ed. (Oxford University Press, 2006). https://dl.icdst.org/pdfs/files3/ff750bc24ae06fc21cf3301c2b3fcb5a.pdf

D. R. Askeland, P. P. Fulay, and W. J. Wright, Ciencia e ingeniería de materiales, sexta ed. (Cengage Learning Editores, S.A., 2013) p. 892. https://osvaldoweb.files.wordpress.com/2016/04/ciencia-e-ingenieria-de-materiales-sexta-edicic3b3n.pdf

J. Liu, M. Jiang, Y. Wang, G. Wu, and Z. Wu, Ceram. Int. 39, 9173 (2013). https://www.sciencedirect.com/science/article/pii/S0272884213005294?via%3Dihub DOI: https://doi.org/10.1016/j.ceramint.2013.05.018

K. Senthilkumar, N. Saba, and et al., Contr. Build. Mater. 195, 423 (2019). https://www.sciencedirect.com/science/article/abs/pii/S0950061818327478?via%3Dihub DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.081

K. L. Pickering, M. G. Aruan-Efendy, and T. M. Le, Compos. - A: Appl. Sci. Manuf. 83, 98 (2015). https://www.sciencedirect.com/science/article/pii/S1359835X15003115?via%3Dihub DOI: https://doi.org/10.1016/j.compositesa.2015.08.038

C. E. Njoku, K. K. Alaneme, J. A. Omotoyinbo, and M. O. Daramola, Adv. Mat. Lett. 10, 682 (2019). https://aml.iaamonline.org/article_13767.html DOI: https://doi.org/10.5185/amlett.2019.9907

J. A. Halip, L. S. Hua, and et al., Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites (Woodhead Publishing, 2019) pp. 141–156. https://www.sciencedirect.com/science/article/pii/B9780081022924000084?via%3Dihub DOI: https://doi.org/10.1016/B978-0-08-102292-4.00008-4

S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. - A: Appl. Sci. Manuf. 35, 371 (2004). https://www.sciencedirect.com/science/article/abs/pii/S1359835X03002951?via%3Dihub DOI: https://doi.org/10.1016/j.compositesa.2003.09.016

V. Shanmugam, R. A. Mensah, and et al., JCOMC 5 (2021). https://www.sciencedirect.com/science/article/pii/S2666682021000335?via%3Dihub

P. Peças, H. Carvalho, H. Salman, and M. Leite, J. Compos. Sci. , 1 (2018). https://www.mdpi.com/2504-477X/2/4/66 DOI: https://doi.org/10.3390/jcs2040066

O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Prog. Polym. Sci. 37, 1552 (2012). https://www.sciencedirect.com/science/article/pii/S0079670012000391?via%3Dihub DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003

M. Jawaid and H. P. S. Abdul Khalil, Carbohyd. Polym. 86, 1 (2011). https://www.sciencedirect.com/science/article/abs/pii/S014486171100316X?via%3Dihub DOI: https://doi.org/10.1016/j.carbpol.2011.04.043

K. Rohit and S. Dixit, Polym. Renew. Resour. 7, 43 (2016). https://journals.sagepub.com/doi/10.1177/204124791600700202 DOI: https://doi.org/10.1177/204124791600700202

S. M. Rangappa, S. Siengchin, and et al., Polym. Compos. 43, 645 (2022). https://onlinelibrary.wiley.com/doi/10.1002/pc.26413 DOI: https://doi.org/10.1002/pc.26413

T. P. Sathishkumar, P. Navaneethakrishnan, and et al., J. Reinf. Plast. Compos. 32, 1457 (2013). https://journals.sagepub.com/doi/10.1177/0731684413495322 DOI: https://doi.org/10.1177/0731684413495322

M. J. John and R. D. Anandjiwala, Polym. Compos. 29, 187 (2007). https://onlinelibrary.wiley.com/doi/10.1002/pc.20461 DOI: https://doi.org/10.1002/pc.20461

P. H. Fernandes, M. de Freitas, and et al., Polímeros 25, 9 (2015). https://www.scielo.br/j/po/a/fMdzmd8wz3RJypPD4xW9jww/?lang=en

M. Hughes, J. Mater. Sci. 47, 599 (2012). https://link.springer.com/article/10.1007/s10853-011-6025-3

M. Fuqua, S. Huo, and C. Ulven, Polym. Rev. 52, 259 (2012). https://www.tandfonline.com/doi/abs/10.1080/15583724.2012.705409 DOI: https://doi.org/10.1080/15583724.2012.705409

A. Ali, K. Shaker, Y. Nawab, M. Jabbar, T. Hussain, J. Militky, and V. Baheti, J. Ind. Text. 47, 1 (2016). https://journals.sagepub.com/doi/10.1177/1528083716654468 DOI: https://doi.org/10.1177/1528083716654468

R. Fangueiro and S. Rana, Natural Fibres: advances in science and technology towards industrial applications, Vol. 12 (Springer, 2016) pp. 343–350. https://link.springer.com/book/10.1007/978-94-017-7515-1 DOI: https://doi.org/10.1007/978-94-017-7515-1

A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci. 59, 1329 (1996). https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(19960222)59:8%3C1329::AID-APP17%3E3.0.CO;2-0

Z. Azwa, B. Yousif, A. Manalo, and W. Karunasena, Mater. Des. 47, 424 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0261306912007832?via%3Dihub DOI: https://doi.org/10.1016/j.matdes.2012.11.025

M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. B. Eng. 53, 362 (2013). https://www.sciencedirect.com/science/article/abs/pii/S1359836813003028?via%3Dihub DOI: https://doi.org/10.1016/j.compositesb.2013.05.048

P. Luna, Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibers, Ph.D. thesis, Universidad Nacional de Colombia (2020). https://repositorio.unal.edu.co/handle/unal/77927

M. Estrada, Extracción y caracterización mecánica de las fibras de bambú (Guadua angustifolia) para su uso potencial como refuerzo de materiales compuestos, Ph.D. tesis, Universidad de Los Andes (2010). https://repositorio.uniandes.edu.co/handle/1992/11158

P. Luna and J. L. Marriaga, An extraction methodology of Guadua angustifolia bamboo fibers (6th Amazon and Pacific Green Materials Congress and Sustainable Construction Materials LAT-RILEM Conference, 2016). https://discovery.upc.edu/discovery/fulldisplay?vid=34CSUC_UPC:VU1&docid=alma991004084949706711&lang=ca&context=L&adaptor=Local%20Search%20Engine

S. Subash, S. T. Retnam, and E. Raja, IJACSA 5, 22 (2017). http://www.irdindia.in/journal_ijacsa/pdf/vol5_iss2/4.pdf

P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Mater. Des. 63, 820 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0261306914005135?via%3Dihub DOI: https://doi.org/10.1016/j.matdes.2014.06.058

R. Acosta, J. A. Montoya, and J. Welling, BioResources 16, 3214 (2021). https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_16_2_3214_Acosta_Suitable_Shape_Tensile_Test DOI: https://doi.org/10.15376/biores.16.2.3214-3223

F. A. Silva, N. Chawla, and R. D. T. Filho, Compos. Sci. Technol. 68, 3438 (2008). https://www.sciencedirect.com/science/article/abs/pii/S0266353808003886?via%3Dihub DOI: https://doi.org/10.1016/j.compscitech.2008.10.001

S. Delvasto, E. F. Toro, F. Perdomo, and R. M. de Gutiérrez, Constr. Build. Mater. 24, 187 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0950061809002992?via%3Dihub DOI: https://doi.org/10.1016/j.conbuildmat.2009.01.010

L. Osorio, E. Trujillo, and et al., J. Reinf. Plast. Compos. 30, 396 (2011). https://journals.sagepub.com/doi/10.1177/0731684410397683

Y. G. T. Girijappa, S. M. Rangappa, and et al., Front. Mater. 6 (2019). https://www.frontiersin.org/articles/10.3389/fmats.2019.00226/full

T. Alsaeed, B. F. Yousif, and H. Ku, Mater. Des. 43, 177 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0261306912004487?via%3Dihub DOI: https://doi.org/10.1016/j.matdes.2012.06.061

M. Y. Hashim, A. M. Amin, and et al., J. Phys.: Conf. Ser. 914, 012030 (2017). https://iopscience.iop.org/article/10.1088/1742-6596/914/1/012030 DOI: https://doi.org/10.1088/1742-6596/914/1/012030

D. Hull and T. Clyne, An introduction to composite materials, 2nd ed. (Cambridge University Press, 1996). https://www.cambridge.org/core/books/an-introduction-to-composite-materials/E42355260EDA500515C567390271E995

A. Valadez-Gonzalez, J. M. Cervantes, R. Olayo, and P. J. Herrera-Franco, Compos. B. Eng. 30, 309 (1999). https://www.sciencedirect.com/science/article/abs/pii/S1359836898000547?via%3Dihub DOI: https://doi.org/10.1016/S1359-8368(98)00054-7

J. Summerscales, N. P. J. Dissanayake, A. S. Virk, and W. Hall, Compos. - A: Appl. Sci. Manuf. 41, 1329 (2010). https://www.sciencedirect.com/science/article/abs/pii/S1359835X10001685?via%3Dihub DOI: https://doi.org/10.1016/j.compositesa.2010.06.001

J. George, M. Sreekala, and S. Thomas, Polym. Eng. Sci. 41, 1471 (2001). https://onlinelibrary.wiley.com/doi/10.1002/pen.10846 DOI: https://doi.org/10.1002/pen.10846

M. R. Sanjay, S. Siengchin, and et al., Carbohyd. Polym. 207, 108 (2019). https://www.sciencedirect.com/science/article/abs/pii/S0144861718314152?via%3Dihub

D. Lui, J. Song, and et al., Cellulose 19, 1449 (2012). https://link.springer.com/article/10.1007/s10570-012-9741-1 DOI: https://doi.org/10.1007/s10570-012-9741-1

X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ. 15, 25 (2007). https://link.springer.com/article/10.1007/s10924-006-0042-3 DOI: https://doi.org/10.1007/s10924-006-0042-3

M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Composites Part B: Engineering 43, 2883 (2012). https://www.sciencedirect.com/science/article/abs/pii/S1359836812002922?via%3Dihub DOI: https://doi.org/10.1016/j.compositesb.2012.04.053

R. Punyamurthy, D. Sampathkumar, and et al., BioResources 7, 3515 (2012). https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3515_Punyamurthy_SSB_Alkali_Absorption_Abaca_Fiber#:~:text=In%20the%20present%20work%2C%20the,than%20the%20untreated%20raw%20fiber

R. Li, L. Ye, and Y. Y. Mai, Compos. - A: Appl. Sci. Manuf. 28, 73 (1997). https://www.sciencedirect.com/science/article/abs/pii/S1359835X96000978?via%3Dihub DOI: https://doi.org/10.1016/S1359-835X(96)00097-8

J. M. Albella, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones (Consejo Superior de Investigaciones Científicas, 2003). https://books.google.com.mx/books?id=0ofVZ0pBh-4C&printsec=frontcover#v=onepage&q&f=false

M. J. Shenton and G. C. Stevens, J. Phys. D: Appl. Phys. 34, 2761 (2001). https://iopscience.iop.org/article/10.1088/0022-3727/34/18/308/pdf DOI: https://doi.org/10.1088/0022-3727/34/18/308

A. Bogaerts, E. Neyts, R. Gijbels, and J. V. D. Mullen, Spectrochim. Acta B: At. Spectrosc. 57, 609 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0584854701004062?via%3Dihub DOI: https://doi.org/10.1016/S0584-8547(01)00406-2

S. K. Nema and P. B. Jhala, Plasma technologies for textile and apparel (Woodhead Publishing India Pvt. Ltd., 2015). https://books.google.com.co/books?hl=es&lr=&id=0Uj7CAAAQBAJ&oi=fnd&pg=PP1&dq=Plasma+technologies+for+textile+and+apparel&ots=U1AEWenkN0&sig=cyU4boUa6AfV0p7B8j5uar440vI#v=onepage&q&f=false

F. S. Denes and S. Manolache, Prog. Polym. Sci. 29, 815 (2004). https://www.sciencedirect.com/science/article/pii/S0079670004000589?via%3Dihub

T. H. C. Costa, M. Feitor, and et al., Matéria 13, 65 (2008). https://www.scielo.br/j/rmat/a/bjRNZfmhxKJ6PSwjw99NLbn/?lang=pt DOI: https://doi.org/10.1590/S1517-70762008000100008

M. O. Cardoso Macêdo, H. R. Alves de Macêdo, and et al., Revista Brasileira de Inovação Tecnológica em Saúde 1, 1 (2011). https://periodicos.ufrn.br/reb/article/view/1499

B. Barra, S. Santos, and et al., Ind. Crops. Prod. 77, 691 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0926669015302764?via%3Dihub DOI: https://doi.org/10.1016/j.indcrop.2015.07.052

Z. Q. Hua, R. Sitaru, and et al., Plasmas and Polymers 2, 199 (1997). https://link.springer.com/article/10.1007/BF02766154 DOI: https://doi.org/10.1007/BF02766154

How to Cite

APA

Luna, P. and Lizarazo-Marriaga, J. M. (2022). FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA. MOMENTO, (65), 65–79. https://doi.org/10.15446/mo.n65.103151

ACM

[1]
Luna, P. and Lizarazo-Marriaga, J.M. 2022. FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA. MOMENTO. 65 (Jul. 2022), 65–79. DOI:https://doi.org/10.15446/mo.n65.103151.

ACS

(1)
Luna, P.; Lizarazo-Marriaga, J. M. FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA. Momento 2022, 65-79.

ABNT

LUNA, P.; LIZARAZO-MARRIAGA, J. M. FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA. MOMENTO, [S. l.], n. 65, p. 65–79, 2022. DOI: 10.15446/mo.n65.103151. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/103151. Acesso em: 20 mar. 2025.

Chicago

Luna, Patricia, and Juan M. Lizarazo-Marriaga. 2022. “FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA”. MOMENTO, no. 65 (July):65-79. https://doi.org/10.15446/mo.n65.103151.

Harvard

Luna, P. and Lizarazo-Marriaga, J. M. (2022) “FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA”, MOMENTO, (65), pp. 65–79. doi: 10.15446/mo.n65.103151.

IEEE

[1]
P. Luna and J. M. Lizarazo-Marriaga, “FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA”, Momento, no. 65, pp. 65–79, Jul. 2022.

MLA

Luna, P., and J. M. Lizarazo-Marriaga. “FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA”. MOMENTO, no. 65, July 2022, pp. 65-79, doi:10.15446/mo.n65.103151.

Turabian

Luna, Patricia, and Juan M. Lizarazo-Marriaga. “FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA”. MOMENTO, no. 65 (July 5, 2022): 65–79. Accessed March 20, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/103151.

Vancouver

1.
Luna P, Lizarazo-Marriaga JM. FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA. Momento [Internet]. 2022 Jul. 5 [cited 2025 Mar. 20];(65):65-79. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/103151

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Elieber Barros Bezerra, Renate Maria Ramos Wellen, Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Emanuel Pereira do Nascimento, Edcleide Maria Araújo. (2024). Toward the production of biopolyethylene‐based ecocomposites with improved performance: The potential of eggshell particles as an ecological additive. Journal of Applied Polymer Science, 141(22) https://doi.org/10.1002/app.55439.

2. Andrés Mauricio Holguín Posso, Juan Carlos Macías Silva, Juan Pablo Castañeda Niño, Jose Herminsul Mina Hernandez, Lety del Pilar Fajardo Cabrera de Lima. (2024). Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. Polymers, 16(11), p.1608. https://doi.org/10.3390/polym16111608.

3. Eduardo da Silva Barbosa Ferreira, Fabiano Santana da Silva, Carlos Bruno Barreto Luna, Anna Raffaela de Matos Costa, Fernanda Menezes de Sousa, Laura Hecker de Carvalho, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2024). Toward Producing Biopolyethylene/Babassu Fiber Biocomposites with Improved Mechanical and Thermomechanical Properties. Polymers, 16(3), p.419. https://doi.org/10.3390/polym16030419.

4. Oscar G. Toapanta, Juan Paredes, Manuel Meneses, Gabriela Salinas. (2024). Validation of DOE Factorial/Taguchi/Surface Response Models of Mechanical Properties of Synthetic and Natural Fiber Reinforced Epoxy Matrix Hybrid Material. Polymers, 16(14), p.2051. https://doi.org/10.3390/polym16142051.

Dimensions

PlumX

Article abstract page views

1039

Downloads

Download data is not yet available.