FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA
NATURAL FIBERS AS REINFORCEMENT IN POLYMER MATRIX COMPOSITE MATERIALS
DOI:
https://doi.org/10.15446/mo.n65.103151Keywords:
fibras naturales, materiales compuestos, tratamientos de compatibilización, guadua angustifolia (es)natural fibers, composite materials, compatibilization treatments, Guadua angustifolia (en)
Downloads
Due to the environmental crisis that humanity is going through, several researches are currently being carried out to find sustainable alternatives for different industrial processes. In this sense, natural fibers have become a valuable resource for different industries, including the composite industry. Natural fibers are renewable resources that can be obtained from animals or plants and have multiple advantages, such as low cost and weight, biodegradability and high specific properties. This paper is a review of some relevant aspects to consider in the use of natural fibers in the composites industry, such as their origin, chemical composition, extraction methodology, physical and mechanical properties, and some necessary treatments to improve adhesion when they are used as reinforcement of polymeric matrices. In addition, some of the results obtained in a research focused on providing technical aspects for the use of bamboo fibers guadua angustifolia as reinforcement material are highlighted. It should be noted that the review presented in this paper focuses on plant-based fibers.
References
M. F. Ashby, Materials Selection in Mechanical Design, 4th ed. (Butterworth-Heinemann, Oxford, 2011) pp. 461–477. https://www.sciencedirect.com/science/article/pii/B9781856176637000163?via%3Dihub DOI: https://doi.org/10.1016/B978-1-85617-663-7.00016-3
M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, 2008). https://books.google.com.co/books?id=v-_oAwAAQBAJ DOI: https://doi.org/10.1017/CBO9780511810947
M. D. Isaac and O. Ishai, Engineering Mechanics of Composite Materials, 2nd ed. (Oxford University Press, 2006). https://dl.icdst.org/pdfs/files3/ff750bc24ae06fc21cf3301c2b3fcb5a.pdf
D. R. Askeland, P. P. Fulay, and W. J. Wright, Ciencia e ingeniería de materiales, sexta ed. (Cengage Learning Editores, S.A., 2013) p. 892. https://osvaldoweb.files.wordpress.com/2016/04/ciencia-e-ingenieria-de-materiales-sexta-edicic3b3n.pdf
J. Liu, M. Jiang, Y. Wang, G. Wu, and Z. Wu, Ceram. Int. 39, 9173 (2013). https://www.sciencedirect.com/science/article/pii/S0272884213005294?via%3Dihub DOI: https://doi.org/10.1016/j.ceramint.2013.05.018
K. Senthilkumar, N. Saba, and et al., Contr. Build. Mater. 195, 423 (2019). https://www.sciencedirect.com/science/article/abs/pii/S0950061818327478?via%3Dihub DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.081
K. L. Pickering, M. G. Aruan-Efendy, and T. M. Le, Compos. - A: Appl. Sci. Manuf. 83, 98 (2015). https://www.sciencedirect.com/science/article/pii/S1359835X15003115?via%3Dihub DOI: https://doi.org/10.1016/j.compositesa.2015.08.038
C. E. Njoku, K. K. Alaneme, J. A. Omotoyinbo, and M. O. Daramola, Adv. Mat. Lett. 10, 682 (2019). https://aml.iaamonline.org/article_13767.html DOI: https://doi.org/10.5185/amlett.2019.9907
J. A. Halip, L. S. Hua, and et al., Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites (Woodhead Publishing, 2019) pp. 141–156. https://www.sciencedirect.com/science/article/pii/B9780081022924000084?via%3Dihub DOI: https://doi.org/10.1016/B978-0-08-102292-4.00008-4
S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. - A: Appl. Sci. Manuf. 35, 371 (2004). https://www.sciencedirect.com/science/article/abs/pii/S1359835X03002951?via%3Dihub DOI: https://doi.org/10.1016/j.compositesa.2003.09.016
V. Shanmugam, R. A. Mensah, and et al., JCOMC 5 (2021). https://www.sciencedirect.com/science/article/pii/S2666682021000335?via%3Dihub
P. Peças, H. Carvalho, H. Salman, and M. Leite, J. Compos. Sci. , 1 (2018). https://www.mdpi.com/2504-477X/2/4/66 DOI: https://doi.org/10.3390/jcs2040066
O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Prog. Polym. Sci. 37, 1552 (2012). https://www.sciencedirect.com/science/article/pii/S0079670012000391?via%3Dihub DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003
M. Jawaid and H. P. S. Abdul Khalil, Carbohyd. Polym. 86, 1 (2011). https://www.sciencedirect.com/science/article/abs/pii/S014486171100316X?via%3Dihub DOI: https://doi.org/10.1016/j.carbpol.2011.04.043
K. Rohit and S. Dixit, Polym. Renew. Resour. 7, 43 (2016). https://journals.sagepub.com/doi/10.1177/204124791600700202 DOI: https://doi.org/10.1177/204124791600700202
S. M. Rangappa, S. Siengchin, and et al., Polym. Compos. 43, 645 (2022). https://onlinelibrary.wiley.com/doi/10.1002/pc.26413 DOI: https://doi.org/10.1002/pc.26413
T. P. Sathishkumar, P. Navaneethakrishnan, and et al., J. Reinf. Plast. Compos. 32, 1457 (2013). https://journals.sagepub.com/doi/10.1177/0731684413495322 DOI: https://doi.org/10.1177/0731684413495322
M. J. John and R. D. Anandjiwala, Polym. Compos. 29, 187 (2007). https://onlinelibrary.wiley.com/doi/10.1002/pc.20461 DOI: https://doi.org/10.1002/pc.20461
P. H. Fernandes, M. de Freitas, and et al., Polímeros 25, 9 (2015). https://www.scielo.br/j/po/a/fMdzmd8wz3RJypPD4xW9jww/?lang=en
M. Hughes, J. Mater. Sci. 47, 599 (2012). https://link.springer.com/article/10.1007/s10853-011-6025-3
M. Fuqua, S. Huo, and C. Ulven, Polym. Rev. 52, 259 (2012). https://www.tandfonline.com/doi/abs/10.1080/15583724.2012.705409 DOI: https://doi.org/10.1080/15583724.2012.705409
A. Ali, K. Shaker, Y. Nawab, M. Jabbar, T. Hussain, J. Militky, and V. Baheti, J. Ind. Text. 47, 1 (2016). https://journals.sagepub.com/doi/10.1177/1528083716654468 DOI: https://doi.org/10.1177/1528083716654468
R. Fangueiro and S. Rana, Natural Fibres: advances in science and technology towards industrial applications, Vol. 12 (Springer, 2016) pp. 343–350. https://link.springer.com/book/10.1007/978-94-017-7515-1 DOI: https://doi.org/10.1007/978-94-017-7515-1
A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci. 59, 1329 (1996). https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(19960222)59:8%3C1329::AID-APP17%3E3.0.CO;2-0
Z. Azwa, B. Yousif, A. Manalo, and W. Karunasena, Mater. Des. 47, 424 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0261306912007832?via%3Dihub DOI: https://doi.org/10.1016/j.matdes.2012.11.025
M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. B. Eng. 53, 362 (2013). https://www.sciencedirect.com/science/article/abs/pii/S1359836813003028?via%3Dihub DOI: https://doi.org/10.1016/j.compositesb.2013.05.048
P. Luna, Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibers, Ph.D. thesis, Universidad Nacional de Colombia (2020). https://repositorio.unal.edu.co/handle/unal/77927
M. Estrada, Extracción y caracterización mecánica de las fibras de bambú (Guadua angustifolia) para su uso potencial como refuerzo de materiales compuestos, Ph.D. tesis, Universidad de Los Andes (2010). https://repositorio.uniandes.edu.co/handle/1992/11158
P. Luna and J. L. Marriaga, An extraction methodology of Guadua angustifolia bamboo fibers (6th Amazon and Pacific Green Materials Congress and Sustainable Construction Materials LAT-RILEM Conference, 2016). https://discovery.upc.edu/discovery/fulldisplay?vid=34CSUC_UPC:VU1&docid=alma991004084949706711&lang=ca&context=L&adaptor=Local%20Search%20Engine
S. Subash, S. T. Retnam, and E. Raja, IJACSA 5, 22 (2017). http://www.irdindia.in/journal_ijacsa/pdf/vol5_iss2/4.pdf
P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Mater. Des. 63, 820 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0261306914005135?via%3Dihub DOI: https://doi.org/10.1016/j.matdes.2014.06.058
R. Acosta, J. A. Montoya, and J. Welling, BioResources 16, 3214 (2021). https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_16_2_3214_Acosta_Suitable_Shape_Tensile_Test DOI: https://doi.org/10.15376/biores.16.2.3214-3223
F. A. Silva, N. Chawla, and R. D. T. Filho, Compos. Sci. Technol. 68, 3438 (2008). https://www.sciencedirect.com/science/article/abs/pii/S0266353808003886?via%3Dihub DOI: https://doi.org/10.1016/j.compscitech.2008.10.001
S. Delvasto, E. F. Toro, F. Perdomo, and R. M. de Gutiérrez, Constr. Build. Mater. 24, 187 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0950061809002992?via%3Dihub DOI: https://doi.org/10.1016/j.conbuildmat.2009.01.010
L. Osorio, E. Trujillo, and et al., J. Reinf. Plast. Compos. 30, 396 (2011). https://journals.sagepub.com/doi/10.1177/0731684410397683
Y. G. T. Girijappa, S. M. Rangappa, and et al., Front. Mater. 6 (2019). https://www.frontiersin.org/articles/10.3389/fmats.2019.00226/full
T. Alsaeed, B. F. Yousif, and H. Ku, Mater. Des. 43, 177 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0261306912004487?via%3Dihub DOI: https://doi.org/10.1016/j.matdes.2012.06.061
M. Y. Hashim, A. M. Amin, and et al., J. Phys.: Conf. Ser. 914, 012030 (2017). https://iopscience.iop.org/article/10.1088/1742-6596/914/1/012030 DOI: https://doi.org/10.1088/1742-6596/914/1/012030
D. Hull and T. Clyne, An introduction to composite materials, 2nd ed. (Cambridge University Press, 1996). https://www.cambridge.org/core/books/an-introduction-to-composite-materials/E42355260EDA500515C567390271E995
A. Valadez-Gonzalez, J. M. Cervantes, R. Olayo, and P. J. Herrera-Franco, Compos. B. Eng. 30, 309 (1999). https://www.sciencedirect.com/science/article/abs/pii/S1359836898000547?via%3Dihub DOI: https://doi.org/10.1016/S1359-8368(98)00054-7
J. Summerscales, N. P. J. Dissanayake, A. S. Virk, and W. Hall, Compos. - A: Appl. Sci. Manuf. 41, 1329 (2010). https://www.sciencedirect.com/science/article/abs/pii/S1359835X10001685?via%3Dihub DOI: https://doi.org/10.1016/j.compositesa.2010.06.001
J. George, M. Sreekala, and S. Thomas, Polym. Eng. Sci. 41, 1471 (2001). https://onlinelibrary.wiley.com/doi/10.1002/pen.10846 DOI: https://doi.org/10.1002/pen.10846
M. R. Sanjay, S. Siengchin, and et al., Carbohyd. Polym. 207, 108 (2019). https://www.sciencedirect.com/science/article/abs/pii/S0144861718314152?via%3Dihub
D. Lui, J. Song, and et al., Cellulose 19, 1449 (2012). https://link.springer.com/article/10.1007/s10570-012-9741-1 DOI: https://doi.org/10.1007/s10570-012-9741-1
X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ. 15, 25 (2007). https://link.springer.com/article/10.1007/s10924-006-0042-3 DOI: https://doi.org/10.1007/s10924-006-0042-3
M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Composites Part B: Engineering 43, 2883 (2012). https://www.sciencedirect.com/science/article/abs/pii/S1359836812002922?via%3Dihub DOI: https://doi.org/10.1016/j.compositesb.2012.04.053
R. Punyamurthy, D. Sampathkumar, and et al., BioResources 7, 3515 (2012). https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3515_Punyamurthy_SSB_Alkali_Absorption_Abaca_Fiber#:~:text=In%20the%20present%20work%2C%20the,than%20the%20untreated%20raw%20fiber
R. Li, L. Ye, and Y. Y. Mai, Compos. - A: Appl. Sci. Manuf. 28, 73 (1997). https://www.sciencedirect.com/science/article/abs/pii/S1359835X96000978?via%3Dihub DOI: https://doi.org/10.1016/S1359-835X(96)00097-8
J. M. Albella, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones (Consejo Superior de Investigaciones Científicas, 2003). https://books.google.com.mx/books?id=0ofVZ0pBh-4C&printsec=frontcover#v=onepage&q&f=false
M. J. Shenton and G. C. Stevens, J. Phys. D: Appl. Phys. 34, 2761 (2001). https://iopscience.iop.org/article/10.1088/0022-3727/34/18/308/pdf DOI: https://doi.org/10.1088/0022-3727/34/18/308
A. Bogaerts, E. Neyts, R. Gijbels, and J. V. D. Mullen, Spectrochim. Acta B: At. Spectrosc. 57, 609 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0584854701004062?via%3Dihub DOI: https://doi.org/10.1016/S0584-8547(01)00406-2
S. K. Nema and P. B. Jhala, Plasma technologies for textile and apparel (Woodhead Publishing India Pvt. Ltd., 2015). https://books.google.com.co/books?hl=es&lr=&id=0Uj7CAAAQBAJ&oi=fnd&pg=PP1&dq=Plasma+technologies+for+textile+and+apparel&ots=U1AEWenkN0&sig=cyU4boUa6AfV0p7B8j5uar440vI#v=onepage&q&f=false
F. S. Denes and S. Manolache, Prog. Polym. Sci. 29, 815 (2004). https://www.sciencedirect.com/science/article/pii/S0079670004000589?via%3Dihub
T. H. C. Costa, M. Feitor, and et al., Matéria 13, 65 (2008). https://www.scielo.br/j/rmat/a/bjRNZfmhxKJ6PSwjw99NLbn/?lang=pt DOI: https://doi.org/10.1590/S1517-70762008000100008
M. O. Cardoso Macêdo, H. R. Alves de Macêdo, and et al., Revista Brasileira de Inovação Tecnológica em Saúde 1, 1 (2011). https://periodicos.ufrn.br/reb/article/view/1499
B. Barra, S. Santos, and et al., Ind. Crops. Prod. 77, 691 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0926669015302764?via%3Dihub DOI: https://doi.org/10.1016/j.indcrop.2015.07.052
Z. Q. Hua, R. Sitaru, and et al., Plasmas and Polymers 2, 199 (1997). https://link.springer.com/article/10.1007/BF02766154 DOI: https://doi.org/10.1007/BF02766154
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Elieber Barros Bezerra, Renate Maria Ramos Wellen, Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Emanuel Pereira do Nascimento, Edcleide Maria Araújo. (2024). Toward the production of biopolyethylene‐based ecocomposites with improved performance: The potential of eggshell particles as an ecological additive. Journal of Applied Polymer Science, 141(22) https://doi.org/10.1002/app.55439.
2. Andrés Mauricio Holguín Posso, Juan Carlos Macías Silva, Juan Pablo Castañeda Niño, Jose Herminsul Mina Hernandez, Lety del Pilar Fajardo Cabrera de Lima. (2024). Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. Polymers, 16(11), p.1608. https://doi.org/10.3390/polym16111608.
3. Eduardo da Silva Barbosa Ferreira, Fabiano Santana da Silva, Carlos Bruno Barreto Luna, Anna Raffaela de Matos Costa, Fernanda Menezes de Sousa, Laura Hecker de Carvalho, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2024). Toward Producing Biopolyethylene/Babassu Fiber Biocomposites with Improved Mechanical and Thermomechanical Properties. Polymers, 16(3), p.419. https://doi.org/10.3390/polym16030419.
4. Oscar G. Toapanta, Juan Paredes, Manuel Meneses, Gabriela Salinas. (2024). Validation of DOE Factorial/Taguchi/Surface Response Models of Mechanical Properties of Synthetic and Natural Fiber Reinforced Epoxy Matrix Hybrid Material. Polymers, 16(14), p.2051. https://doi.org/10.3390/polym16142051.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.