Published

2023-01-02

Quantum vacuum fluctuations in inorganic compound CdSe

Fluctuaciones de vacío cuántico en el compuesto inorgánico CdSe

DOI:

https://doi.org/10.15446/mo.n66.103486

Keywords:

quantum vacuum fluctuations, electric field, light propagation (en)
fluctuaciones del vacío cuántico, campo eléctrico, propagación de la luz (es)

Downloads

Authors

In the present work, we study the quantum vacuum fluctuations at finite temperature in the propagation of light in nonlinear optical media. We present nonlinear materials, that have the second-order electrical susceptibility tensor, and the fluctuating effective refractive index caused by fluctuating vacuum electric fields. Likewise, we study the fluctuations of the vacuum, which led to the contributions of thermal and mixed fluctuations being associated with a faithful test function to perform the calculations, in contrast to the Lorentzian distribution. We show the contribution of thermal and mixed fluctuations to time-of-flight fluctuations compared to the contributions of vacuum fluctuations. The result reveals a numerical estimate performed on cadmium selenide (CdSe) suggesting that the effects of fluctuations can cause uncertainty in time of flight due  to quantum vacuum fluctuations in terms of thermal and mixed fluctuations.

En el presente trabajo se estudiaron las fluctuaciones del vacío cuántico a temperatura finita en la propagación de la luz en medios ópticos no lineales. Se presentan materiales no lineales que tienen el tensor de susceptibilidad eléctrica de segundo orden y el Índice de refracción efectivo fluctuante causado por campos eléctricos de vacío fluctuantes. De igual manera, se estudiaron las fluctuaciones del vacío, lo que llevó a asociar las contribuciones de las fluctuaciones térmicas y mixtas a una función de prueba fiel para realizar los cálculos, en contraste con la distribución lorentziana. Se muestra la contribución de las fluctuaciones térmicas y mixtas a las fluctuaciones del tiempo de vuelo en comparación con las contribuciones de las fluctuaciones del vacío. El resultado arrojó una estimación numérica realizada en seleniuro de cadmio (CdSe) que sugiere que los efectos de las fluctuaciones pueden causar incertidumbre en el tiempo de vuelo debido a las fluctuaciones del vacío cuántico en términos de fluctuaciones térmicas y mixtas.

References

E. Nelson, Quantum fluctuations (Princeton University Press, 1985). https://web.math.princeton.edu/~nelson/books/qf.pdf

F. Benati, F. Carollo, R. Floreanini, and H. Narnhofer, J. Phys. A: Math. Theor. 50, 423001 (2017). https://iopscience.iop.org/article/10.1088/1751-8121/aa84d2

F. Intravaia, C. Henkel, and M. Antezza, Casimir Physics 834, 345 (2011). https://link.springer.com/chapter/10.1007/978-3-642-20288-9_11

D. A. Dalvit, P. A. M. Neto, and F. D. Mazzitelli, Casimir Physics 834, 419 (2011). https://link.springer.com/chapter/10.1007/978-3-642-20288-9_13

P. W. Milonni, The quantum vacuum: an introduction to quantum electrodynamics (Academic press, 2013). https://books.google.mw/books?id=uPHJCgAAQBAJ&sitesec=reviews&rf=st:us

J. Hu and H. Yu, Phys. Rev. D 100, 026009 (2019). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.026009

J. Hu and H. Yu, Phys. Lett. B 777, 346 (2018). https://www.sciencedirect.com/science/article/pii/S037026931731033X?via%3Dihub

A. Liu, S. L. Chuang, and C. Z. Ning, Appl. Phys. Lett. 76, 333 (2000). https://aip.scitation.org/doi/10.1063/1.125736

M. Kauranen, J. J. Maki, T. Verbiest, S. Van Elshocht, and A. Persoons, Phys. Rev. B 55, R1985 (1997). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.55.R1985

C. B. Schroeder, C. Benedetti, E. Esarey, and W. Leemans, Phys. Rev. Lett. 106, 135002 (2011). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.135002

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, and S. Eckart, Science 350, 420 (2015). https://www.science.org/doi/10.1126/science.aac9788

T. S. Evans and D. A. Steer, Nucl Phys B 474, 481 (1996). https://www.sciencedirect.com/science/article/abs/pii/0550321396002866?via%3Dihub

D. Goderis, A. Verbeure, and P. Vets, J. Stat. Phys. 56, 721 (1989). https://link.springer.com/article/10.1007/BF01016777

L. Robledo, Phys. Rev. C 50, 2874 (1994). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.50.2874

M. Cassier, P. Joly, and M. Kachanovska, Comput. Math. with Appl. 74, 2792 (2017). https://www.sciencedirect.com/science/article/pii/S0898122117304546?via%3Dihub

L. Ford, G. De Lorenci, V.and Menezes, and N. Svaiter, Ann. Phys. 329, 80 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0003491612001637?via%3Dihub

C. Bessa, V. De Lorenci, L. Ford, and N. Svaiter, Ann. Phys. 361, 293 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0003491615002663?via%3Dihub

S. Suresh and C. Arunseshan, Appl. Nanosci. 4, 179 (2014). https://link.springer.com/article/10.1007/s13204-012-0186-5

B. Jensen and A. Torabi, J Opt Soc Am B. 3, 857 (1986). https://opg.optica.org/josab/abstract.cfm?uri=josab-3-6-857

G. Han, L. Wang, and et al., J. Alloys Compd 610, 62 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0925838814009979?via%3Dihub

L. Ford and N. Svaiter, Phys. Rev. D 54, 2640 (1996). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.54.2640

How to Cite

APA

Naixement, L. and Béssa, C. H. (2023). Quantum vacuum fluctuations in inorganic compound CdSe. MOMENTO, (66), 23–40. https://doi.org/10.15446/mo.n66.103486

ACM

[1]
Naixement, L. and Béssa, C.H. 2023. Quantum vacuum fluctuations in inorganic compound CdSe. MOMENTO. 66 (Jan. 2023), 23–40. DOI:https://doi.org/10.15446/mo.n66.103486.

ACS

(1)
Naixement, L.; Béssa, C. H. Quantum vacuum fluctuations in inorganic compound CdSe. Momento 2023, 23-40.

ABNT

NAIXEMENT, L.; BÉSSA, C. H. Quantum vacuum fluctuations in inorganic compound CdSe. MOMENTO, [S. l.], n. 66, p. 23–40, 2023. DOI: 10.15446/mo.n66.103486. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/103486. Acesso em: 30 jul. 2024.

Chicago

Naixement, Luciano, and Carlos H. Béssa. 2023. “Quantum vacuum fluctuations in inorganic compound CdSe”. MOMENTO, no. 66 (January):23-40. https://doi.org/10.15446/mo.n66.103486.

Harvard

Naixement, L. and Béssa, C. H. (2023) “Quantum vacuum fluctuations in inorganic compound CdSe”, MOMENTO, (66), pp. 23–40. doi: 10.15446/mo.n66.103486.

IEEE

[1]
L. Naixement and C. H. Béssa, “Quantum vacuum fluctuations in inorganic compound CdSe”, Momento, no. 66, pp. 23–40, Jan. 2023.

MLA

Naixement, L., and C. H. Béssa. “Quantum vacuum fluctuations in inorganic compound CdSe”. MOMENTO, no. 66, Jan. 2023, pp. 23-40, doi:10.15446/mo.n66.103486.

Turabian

Naixement, Luciano, and Carlos H. Béssa. “Quantum vacuum fluctuations in inorganic compound CdSe”. MOMENTO, no. 66 (January 2, 2023): 23–40. Accessed July 30, 2024. https://revistas.unal.edu.co/index.php/momento/article/view/103486.

Vancouver

1.
Naixement L, Béssa CH. Quantum vacuum fluctuations in inorganic compound CdSe. Momento [Internet]. 2023 Jan. 2 [cited 2024 Jul. 30];(66):23-40. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/103486

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

191

Downloads

Download data is not yet available.