SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH
SÍNTESIS DE NANOCELULOSA COMO REFUERZO MECÁNICO DE ALMIDÓN TERMOPLÁSTICO
DOI:
https://doi.org/10.15446/mo.n67.103549Keywords:
thermoplastic, nanocellulose, mechanical properties (en)termoplástico, nanocelulosa, propiedades mecánicas (es)
Downloads
Nanocellulose was successfully synthetized from microcrystalline cellulose by an acid hydrolysis process. The sample characterization was performed employing X-ray diffraction, zeta potential and confocal Raman microscopy. Nanocellulose-reinforced thermoplastic starch (TPS) composites were prepared by solution casting method, in which a small concentration of nanocellulose improved the elastic modulus of TPS. This property was calculated using the atomic force microscopy nanoindentation method. We conclude that nanocellulose is a good mechanical reinforcement for composites from commercial sources as starch.
Se sintetizó exitosamente nanocelulosa a partir de celulosa microcristalina mediante un proceso de hidrólisis ácida. La caracterización de la muestra se realizó mediante difracción de rayos X, potencial zeta y microscopía Raman confocal. Se prepararon compuestos de almidón termoplástico (TPS, por sus siglas en inglés) reforzados con nanocelulosa mediante el método “casting solution”, en el que una pequeña concentración de nanocelulosa mejoró el módulo de elasticidad del TPS. Esta propiedad se calculó mediante el método de nanoindentación por microscopía de fuerza atómica. Llegamos a la conclusión de que la nanocelulosa es un buen refuerzo mecánico para los compuestos de fuentes comerciales como el almidón.
References
J.-W. Rhim, H.-M. Park, and C.-S. Ha, Bio-Nanocomposites for Food Packaging Applications, Prog. Polym. Sci. 38, 1629 (2013). https://www.sciencedirect.com/science/article/abs/pii/S007967001300049X DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.008
P. Suppakul, J. Miltz, K. Sonneveld, and S. W. Bigger, Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and Its Applications, J. Food Sci. 68, 408 (2003). https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2003.tb05687.x DOI: https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
R. Zhao, P. Torley, and P. J. Halley, Emerging Biodegradable Materials: Starch- and Protein-Based Bio-Nanocomposites, J. Mater. Sci. 43, 3058 (2008). https://doi.org/10.1007/s10853-007-2434-8 DOI: https://doi.org/10.1007/s10853-007-2434-8
A. P. Mathew and A. Dufresne, Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers, Biomacromolecules 3, 609 (2002). https://pubs.acs.org/doi/10.1021/bm0101769 DOI: https://doi.org/10.1021/bm0101769
M. B. Agustin, B. Ahmmad, S. M. M. Alonzo, and F. M. Patriana, Bioplastic Based on Starch and Cellulose Nanocrystals from Rice Straw, J. Reinf. Plast. Compos. 33, 2205 (2014). https://journals.sagepub.com/doi/10.1177/0731684414558325 DOI: https://doi.org/10.1177/0731684414558325
Y. M. Zhou, S. Fu, L. M. Zheng, and H. Zhan, Effect of Nanocellulose Isolation Techniques on the Formation of Reinforced Poly(Vinyl Alcohol) Nanocomposite Films, Express Polym. Lett. 6, 794 (2012). http://dx.doi.org/10.3144/expresspolymlett.2012.85 DOI: https://doi.org/10.3144/expresspolymlett.2012.85
A. Jiménez, M. J. Fabra, P. Talens, and A. Chiralt, Edible and Biodegradable Starch Films: A Review, Food Bioprocess Technol. 5, 2058 (2012). https://link.springer.com/article/10.1007/s11947-012-0835-4 DOI: https://doi.org/10.1007/s11947-012-0835-4
K. Dome, E. Podgorbunskikh, A. Bychkov, and O. Lomovsky, Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment, Polymers (Basel). 12, 641 (2020). https://www.mdpi.com/2073-4360/12/3/641 DOI: https://doi.org/10.3390/polym12030641
R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao, Cellulose Whiskers Extracted from Mulberry: A Novel Biomass Production, Carbohydr. Polym. 76, 94 (2009). https://www.sciencedirect.com/science/article/abs/pii/S0144861708004463 DOI: https://doi.org/10.1016/j.carbpol.2008.09.034
A. Walther, J. V. I. Timonen, I. Díez, A. Laukkanen, and O. Ikkala, Multifunctional High-Performance Biofibers Based on Wet-Extrusion of Renewable Native Cellulose Nanofibrils, Adv. Mater. 23, 2924 (2011). https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201100580 DOI: https://doi.org/10.1002/adma.201100580
A. Thygesen, J. Oddershede, H. Lilholt, A. B. Thomsen, and K. Ståhl, On the Determination of Crystallinity and Cellulose Content in Plant Fibres, Cellulose 12, 563 (2005). https://link.springer.com/article/10.1007/s10570-005-9001-8 DOI: https://doi.org/10.1007/s10570-005-9001-8
L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Text. Res. J. 29, 786 (1959). https://journals.sagepub.com/doi/10.1177/004051755902901003 DOI: https://doi.org/10.1177/004051755902901003
J. F. Revol, A. Dietrich, and D. A. I. Goring, Effect of Mercerization on the Crystallite Size and Crystallinity Index in Cellulose from Different Sources, Can. J. Chem. 65, 1724 (1987). https://cdnsciencepub.com/doi/10.1139/v87-288 DOI: https://doi.org/10.1139/v87-288
F. Jiang and Y.-L. Hsieh, Chemically and Mechanically Isolated Nanocellulose and Their Self-Assembled Structures, Carbohydr. Polym. 95, 32 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0144861713001616 DOI: https://doi.org/10.1016/j.carbpol.2013.02.022
S. Khouri. Experimental Characterization and Theoretical Calculations of Responsive Polymeric Systems (Master thesis). Ontario, Department of Chemical Engineering, Faculty of Engineering, University of Waterloo; 2010. p.63-65. https://uwspace.uwaterloo.ca/handle/10012/5486
V. Landry, A. Alemdar, and P. Blanchet, Nanocrystalline Cellulose: Morphological, Physical, and Mechanical Properties, For. Prod. J. 61, 104 (2011). https://meridian.allenpress.com/fpj/article/61/2/104/136303/Nanocrystalline-Cellulose-Morphological-Physical DOI: https://doi.org/10.13073/0015-7473-61.2.104
U. P. Agarwal, R. S. Reiner, and S. A. Ralph, Cellulose I Crystallinity Determination Using FT–Raman Spectroscopy: Univariate and Multivariate Methods, Cellulose 17, 721 (2010). https://link.springer.com/article/10.1007/s10570-010-9420-z DOI: https://doi.org/10.1007/s10570-010-9420-z
M. F. Doerner and W. D. Nix, A Method for Interpreting the Data from Depth-Sensing Indentation Instruments, J. Mater. Res. 1, 601 (1986). https://link.springer.com/article/10.1557/JMR.1986.0601 DOI: https://doi.org/10.1557/JMR.1986.0601
L. Lendvai and et al, J. Appl. Polym. Sci. 133, 601 (2016). https://onlinelibrary.wiley.com/doi/abs/10.1002/app.42397
N. Tabassi, M. Moghbeli, and I. Ghasemi, Iran. Polym. J. 25, 45 (2016). https://link.springer.com/article/10.1007/s13726-015-0398-0 DOI: https://doi.org/10.1007/s13726-015-0398-0
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. María Alejandra Macías-Silva, Jeffrey Saúl Cedeño-Muñoz, Carlos Augusto Morales-Paredes, Rolando Tinizaray-Castillo, Galo Arturo Perero-Espinoza, Joan Manuel Rodríguez-Díaz, César Mauricio Jarre-Castro. (2024). Nanomaterials in construction industry: An overview of their properties and contributions in building house. Case Studies in Chemical and Environmental Engineering, 10, p.100863. https://doi.org/10.1016/j.cscee.2024.100863.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.