Published

2023-07-04

SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH

SÍNTESIS DE NANOCELULOSA COMO REFUERZO MECÁNICO DE ALMIDÓN TERMOPLÁSTICO

DOI:

https://doi.org/10.15446/mo.n67.103549

Keywords:

thermoplastic, nanocellulose, mechanical properties (en)
termoplástico, nanocelulosa, propiedades mecánicas (es)

Downloads

Authors

  • Antony A. Neciosup-Puican Universidad Nacional Mayor de San Marcos https://orcid.org/0000-0002-1481-2523
  • José A. Castañeda-Vía Universidad Peruana Cayetano Heredia
  • Carlos V. Landauro Universidad Nacional Mayor de San Marcos. Centro de Investigaciones, Tecnol´ogicas, Biom´edicas y Medioambientales (CITBM)
  • Justiniano Quispe-Marcatoma Universidad Nacional Mayor de San Marcos. Centro de Investigaciones, Tecnol´ogicas, Biom´edicas y Medioambientales (CITBM)
  • Ilanit Samolski Universidad Nacional Agraria La Molina.
  • Gretty K. Villena Universidad Nacional Agraria La Molina image/svg+xml

Nanocellulose was successfully synthetized from microcrystalline cellulose by an acid hydrolysis process. The sample characterization was performed employing X-ray diffraction, zeta potential and confocal Raman microscopy. Nanocellulose-reinforced thermoplastic starch (TPS) composites were prepared by solution casting method, in which a small concentration of nanocellulose improved the elastic modulus of TPS. This property was calculated using the atomic force microscopy nanoindentation method. We conclude that nanocellulose is a good mechanical reinforcement for composites from commercial sources as starch.

Se sintetizó exitosamente nanocelulosa a partir de celulosa microcristalina mediante un proceso de hidrólisis ácida. La caracterización de la muestra se realizó mediante difracción de rayos X, potencial zeta y microscopía Raman confocal. Se prepararon compuestos de almidón termoplástico (TPS, por sus siglas en inglés) reforzados con nanocelulosa mediante el método “casting solution”, en el que una pequeña concentración de nanocelulosa mejoró el módulo de elasticidad del TPS. Esta propiedad se calculó mediante el método de nanoindentación por microscopía de fuerza atómica. Llegamos a la conclusión de que la nanocelulosa es un buen refuerzo mecánico para los compuestos de fuentes comerciales como el almidón.

References

J.-W. Rhim, H.-M. Park, and C.-S. Ha, Bio-Nanocomposites for Food Packaging Applications, Prog. Polym. Sci. 38, 1629 (2013). https://www.sciencedirect.com/science/article/abs/pii/S007967001300049X DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.008

P. Suppakul, J. Miltz, K. Sonneveld, and S. W. Bigger, Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and Its Applications, J. Food Sci. 68, 408 (2003). https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2003.tb05687.x DOI: https://doi.org/10.1111/j.1365-2621.2003.tb05687.x

R. Zhao, P. Torley, and P. J. Halley, Emerging Biodegradable Materials: Starch- and Protein-Based Bio-Nanocomposites, J. Mater. Sci. 43, 3058 (2008). https://doi.org/10.1007/s10853-007-2434-8 DOI: https://doi.org/10.1007/s10853-007-2434-8

A. P. Mathew and A. Dufresne, Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers, Biomacromolecules 3, 609 (2002). https://pubs.acs.org/doi/10.1021/bm0101769 DOI: https://doi.org/10.1021/bm0101769

M. B. Agustin, B. Ahmmad, S. M. M. Alonzo, and F. M. Patriana, Bioplastic Based on Starch and Cellulose Nanocrystals from Rice Straw, J. Reinf. Plast. Compos. 33, 2205 (2014). https://journals.sagepub.com/doi/10.1177/0731684414558325 DOI: https://doi.org/10.1177/0731684414558325

Y. M. Zhou, S. Fu, L. M. Zheng, and H. Zhan, Effect of Nanocellulose Isolation Techniques on the Formation of Reinforced Poly(Vinyl Alcohol) Nanocomposite Films, Express Polym. Lett. 6, 794 (2012). http://dx.doi.org/10.3144/expresspolymlett.2012.85 DOI: https://doi.org/10.3144/expresspolymlett.2012.85

A. Jiménez, M. J. Fabra, P. Talens, and A. Chiralt, Edible and Biodegradable Starch Films: A Review, Food Bioprocess Technol. 5, 2058 (2012). https://link.springer.com/article/10.1007/s11947-012-0835-4 DOI: https://doi.org/10.1007/s11947-012-0835-4

K. Dome, E. Podgorbunskikh, A. Bychkov, and O. Lomovsky, Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment, Polymers (Basel). 12, 641 (2020). https://www.mdpi.com/2073-4360/12/3/641 DOI: https://doi.org/10.3390/polym12030641

R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao, Cellulose Whiskers Extracted from Mulberry: A Novel Biomass Production, Carbohydr. Polym. 76, 94 (2009). https://www.sciencedirect.com/science/article/abs/pii/S0144861708004463 DOI: https://doi.org/10.1016/j.carbpol.2008.09.034

A. Walther, J. V. I. Timonen, I. Díez, A. Laukkanen, and O. Ikkala, Multifunctional High-Performance Biofibers Based on Wet-Extrusion of Renewable Native Cellulose Nanofibrils, Adv. Mater. 23, 2924 (2011). https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201100580 DOI: https://doi.org/10.1002/adma.201100580

A. Thygesen, J. Oddershede, H. Lilholt, A. B. Thomsen, and K. Ståhl, On the Determination of Crystallinity and Cellulose Content in Plant Fibres, Cellulose 12, 563 (2005). https://link.springer.com/article/10.1007/s10570-005-9001-8 DOI: https://doi.org/10.1007/s10570-005-9001-8

L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Text. Res. J. 29, 786 (1959). https://journals.sagepub.com/doi/10.1177/004051755902901003 DOI: https://doi.org/10.1177/004051755902901003

J. F. Revol, A. Dietrich, and D. A. I. Goring, Effect of Mercerization on the Crystallite Size and Crystallinity Index in Cellulose from Different Sources, Can. J. Chem. 65, 1724 (1987). https://cdnsciencepub.com/doi/10.1139/v87-288 DOI: https://doi.org/10.1139/v87-288

F. Jiang and Y.-L. Hsieh, Chemically and Mechanically Isolated Nanocellulose and Their Self-Assembled Structures, Carbohydr. Polym. 95, 32 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0144861713001616 DOI: https://doi.org/10.1016/j.carbpol.2013.02.022

S. Khouri. Experimental Characterization and Theoretical Calculations of Responsive Polymeric Systems (Master thesis). Ontario, Department of Chemical Engineering, Faculty of Engineering, University of Waterloo; 2010. p.63-65. https://uwspace.uwaterloo.ca/handle/10012/5486

V. Landry, A. Alemdar, and P. Blanchet, Nanocrystalline Cellulose: Morphological, Physical, and Mechanical Properties, For. Prod. J. 61, 104 (2011). https://meridian.allenpress.com/fpj/article/61/2/104/136303/Nanocrystalline-Cellulose-Morphological-Physical DOI: https://doi.org/10.13073/0015-7473-61.2.104

U. P. Agarwal, R. S. Reiner, and S. A. Ralph, Cellulose I Crystallinity Determination Using FT–Raman Spectroscopy: Univariate and Multivariate Methods, Cellulose 17, 721 (2010). https://link.springer.com/article/10.1007/s10570-010-9420-z DOI: https://doi.org/10.1007/s10570-010-9420-z

M. F. Doerner and W. D. Nix, A Method for Interpreting the Data from Depth-Sensing Indentation Instruments, J. Mater. Res. 1, 601 (1986). https://link.springer.com/article/10.1557/JMR.1986.0601 DOI: https://doi.org/10.1557/JMR.1986.0601

L. Lendvai and et al, J. Appl. Polym. Sci. 133, 601 (2016). https://onlinelibrary.wiley.com/doi/abs/10.1002/app.42397

N. Tabassi, M. Moghbeli, and I. Ghasemi, Iran. Polym. J. 25, 45 (2016). https://link.springer.com/article/10.1007/s13726-015-0398-0 DOI: https://doi.org/10.1007/s13726-015-0398-0

How to Cite

APA

Neciosup-Puican, A. A., Castañeda-Vía, J. A., Landauro, C. V., Quispe-Marcatoma, J., Samolski, I. and Villena, G. K. (2023). SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH. MOMENTO, (67), 55–66. https://doi.org/10.15446/mo.n67.103549

ACM

[1]
Neciosup-Puican, A.A., Castañeda-Vía, J.A., Landauro, C.V., Quispe-Marcatoma, J., Samolski, I. and Villena, G.K. 2023. SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH. MOMENTO. 67 (Jul. 2023), 55–66. DOI:https://doi.org/10.15446/mo.n67.103549.

ACS

(1)
Neciosup-Puican, A. A.; Castañeda-Vía, J. A.; Landauro, C. V.; Quispe-Marcatoma, J.; Samolski, I.; Villena, G. K. SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH. Momento 2023, 55-66.

ABNT

NECIOSUP-PUICAN, A. A.; CASTAÑEDA-VÍA, J. A.; LANDAURO, C. V.; QUISPE-MARCATOMA, J.; SAMOLSKI, I.; VILLENA, G. K. SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH. MOMENTO, [S. l.], n. 67, p. 55–66, 2023. DOI: 10.15446/mo.n67.103549. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/103549. Acesso em: 21 jan. 2025.

Chicago

Neciosup-Puican, Antony A., José A. Castañeda-Vía, Carlos V. Landauro, Justiniano Quispe-Marcatoma, Ilanit Samolski, and Gretty K. Villena. 2023. “SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH”. MOMENTO, no. 67 (July):55-66. https://doi.org/10.15446/mo.n67.103549.

Harvard

Neciosup-Puican, A. A., Castañeda-Vía, J. A., Landauro, C. V., Quispe-Marcatoma, J., Samolski, I. and Villena, G. K. (2023) “SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH”, MOMENTO, (67), pp. 55–66. doi: 10.15446/mo.n67.103549.

IEEE

[1]
A. A. Neciosup-Puican, J. A. Castañeda-Vía, C. V. Landauro, J. Quispe-Marcatoma, I. Samolski, and G. K. Villena, “SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH”, Momento, no. 67, pp. 55–66, Jul. 2023.

MLA

Neciosup-Puican, A. A., J. A. Castañeda-Vía, C. V. Landauro, J. Quispe-Marcatoma, I. Samolski, and G. K. Villena. “SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH”. MOMENTO, no. 67, July 2023, pp. 55-66, doi:10.15446/mo.n67.103549.

Turabian

Neciosup-Puican, Antony A., José A. Castañeda-Vía, Carlos V. Landauro, Justiniano Quispe-Marcatoma, Ilanit Samolski, and Gretty K. Villena. “SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH”. MOMENTO, no. 67 (July 4, 2023): 55–66. Accessed January 21, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/103549.

Vancouver

1.
Neciosup-Puican AA, Castañeda-Vía JA, Landauro CV, Quispe-Marcatoma J, Samolski I, Villena GK. SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH. Momento [Internet]. 2023 Jul. 4 [cited 2025 Jan. 21];(67):55-66. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/103549

Download Citation

CrossRef Cited-by

CrossRef citations1

1. María Alejandra Macías-Silva, Jeffrey Saúl Cedeño-Muñoz, Carlos Augusto Morales-Paredes, Rolando Tinizaray-Castillo, Galo Arturo Perero-Espinoza, Joan Manuel Rodríguez-Díaz, César Mauricio Jarre-Castro. (2024). Nanomaterials in construction industry: An overview of their properties and contributions in building house. Case Studies in Chemical and Environmental Engineering, 10, p.100863. https://doi.org/10.1016/j.cscee.2024.100863.

Dimensions

PlumX

Article abstract page views

353

Downloads

Download data is not yet available.