Published

2023-07-04

MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR

SIMULACIÓN MONTE CARLO DE LA DISTRIBUCIÓN DE DOSIS DE HACES DE FOTONES DE 6, 10 Y 18 MV EN UN TUMOR CEREBRAL

DOI:

https://doi.org/10.15446/mo.n67.104270

Keywords:

dose distribution, simulations of Monte Carlo, PENELOPE (en)
distribución de dosis, simulación Monte Carlo, PENELOPE (es)

Authors

This study aimed to obtain the absorbed dose distribution in a heterogeneous head simulator object where a brain tumor of 2 cm in diameter was located. Materials equivalent to the head and tumor were created. For head and tumor simulation, elemental composition (H, C, N, O, and others) and mass density ρ respectively were used. X-ray spectra of 6, 10 and 18 MV were used for the exposures, projecting a field of 3×3 cm2 to the tumor, with an isocentric source distance of 100 cm. Monte Carlo simulations were done with PENELOPE v.2008 code. The results show that the maximum dose to the skin is 32 %, 20 % and 14 %, the maximum dose to the skull is 88 %, 74 % and 62 %, and the maximum dose to the tumor is 62 %, 67% and 73 %, for energies of 6, 10 and 18 MV respectively. The maximum dose received by the skin and skull tissues decreases with increasing energy, while the dose in the tumor increases with increasing energy.

El objetivo de este estudio fue obtener la distribución de dosis absorbida en un objeto simulador heterogéneo de cabeza en donde se ubicó un tumor cerebral de 2 cm de diámetro. Para la simulación de la cabeza y tumor se usó la composición elemental (H, C, N, O y otros) y densidad de masa ρ respectivamente. Para las exposiciones se utilizó espectros de rayos X de 6, 10 y 18 MV, proyectando un campo de 3×3 cm2 al tumor, con una distancia fuente isocéntro de 100 cm. Las simulaciones Monte Carlo se hicieron con el código PENELOPE v.2008. Los resultados muestran que la dosis máxima en la piel es de 32 %, 20% y 14 %, la dosis m´axima en cráneo es de 88 %, 74% y 62 %, y la dosis máxima en el tumor es de 62 %, 67 % y 73 %, para las energías de 6, 10 y 18 MV respectivamente. La dosis máxima que reciben los tejidos piel y cráneo disminuyen con el aumento de la energía, mientras la dosis en el tumor aumenta con el incremento de la energía.

References

H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, CA: A Cancer J. Clin. 71, 209 (2021). https://acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660

B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, Med. Phys. 25, 1773 (1998). https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.598373 DOI: https://doi.org/10.1118/1.598373

N. Hodapp, Strahlenther Onkol. 188, 97 (2012). https://link.springer.com/article/10.1007/s00066-011-0015-x DOI: https://doi.org/10.1007/s00066-011-0015-x

ICRU, Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50), Tech.

Rep. (1999). https://journals.sagepub.com/toc/crub/os-32/1

A. Brahme, Accuracy requirements and quality assurance of external beam therapy with photons and electrons (Acta

Oncologica, 1988). https://books.google.com.pe/books?id=p6CXZwEACAAJ

N. Papanikolaou, J. Battista, A. Boyer, C. Kappas, E. Klein, T. Mackie, M. Sharpe, and J. Van Dyk, Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Report No 85; Task Group No. 85; Task Group No. 65 (2004). https://www.aapm.org/pubs/reports/RPT_85.pdf DOI: https://doi.org/10.37206/86

A. Isambert, L. Brualla, M. Benkebil, and D. Lefkopoulos, Cancer Radiother. 14, 89 (2010). https://pubmed.ncbi.nlm.nih.gov/20061172/ DOI: https://doi.org/10.1016/j.canrad.2009.09.007

M. Chin and N. Spyrou, App. Radiat. Isotopes 67, S164 (2009). https://www.sciencedirect.com/science/article/abs/pii/S0969804309002747 DOI: https://doi.org/10.1016/j.apradiso.2009.03.040

J. Sempau1 and P. Andreo, Phys. Med. Biol. 51, 3533 (2006). https://edisciplinas.usp.br/pluginfile.php/5001218/mod_resource/content/1/Sempau_Andreo_PMB_2006.pdf DOI: https://doi.org/10.1088/0031-9155/51/14/017

D. Sheikh-Bagheri and D. W. O. Rogers, Med. Phys. 29, 391 (2002). 38 Alberto E. Gonzales Ccosco, Carmen S. Guzm´an-Calcina, Jos´e L. Vega. https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1445413 DOI: https://doi.org/10.1118/1.1445413

IAEA, Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water , Tech. Rep. (2000). https://www-pub.iaea.org/mtcd/publications/pdf/trs398_scr.pdf

J. Vega, Estudos Dosim´etricos em Interfaces Teciduais em Radioterapia Utilizando Dosimetria por Ressonˆancia Paramagn´etica Eletrˆonica EPR (tese de doutorado) (2010). https://pdfs.semanticscholar.org/ad9c/0e41fa83b5699e042c097c33ba9ed0956f68.pdf

ICRU, Report 46: Photon, Electron, Proton and Neutron Interaction Data for Body Tissues, Tech. Rep. (1992). https://journals.sagepub.com/toc/crub/os-24/1

C. Queiroz, P. Nicolucci, S. Fortes, and L. Silva, Med. Dosim. 44, 74 (2019). https://www.meddos.org/article/S0958-3947(18)30027-X/fulltext

L. Lu, Int J Cancer Ther Oncol 1 (2013). http://www.ijcto.org/index.php/IJCTO/article/view/Lu/ijcto.0102.5html DOI: https://doi.org/10.14319/ijcto.0102.5

C. Queiroz, P. Nicolucci, S. Fortes, and L. Silva, Med. Dosim. 44, 74 (2019). https://www.meddos.org/article/S0958-3947(18)30027-X/fulltext DOI: https://doi.org/10.1016/j.meddos.2018.02.009

How to Cite

APA

Gonzales Ccoscco, A. E., Guzmán-Calcina, C. S. and Vega-Ramírez, J. L. (2023). MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR. MOMENTO, (67), 22–38. https://doi.org/10.15446/mo.n67.104270

ACM

[1]
Gonzales Ccoscco, A.E., Guzmán-Calcina, C.S. and Vega-Ramírez, J.L. 2023. MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR. MOMENTO. 67 (Jul. 2023), 22–38. DOI:https://doi.org/10.15446/mo.n67.104270.

ACS

(1)
Gonzales Ccoscco, A. E.; Guzmán-Calcina, C. S.; Vega-Ramírez, J. L. MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR. Momento 2023, 22-38.

ABNT

GONZALES CCOSCCO, A. E.; GUZMÁN-CALCINA, C. S.; VEGA-RAMÍREZ, J. L. MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR. MOMENTO, [S. l.], n. 67, p. 22–38, 2023. DOI: 10.15446/mo.n67.104270. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/104270. Acesso em: 1 feb. 2025.

Chicago

Gonzales Ccoscco, Alberto E., Carmen S. Guzmán-Calcina, and José L. Vega-Ramírez. 2023. “MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR”. MOMENTO, no. 67 (July):22-38. https://doi.org/10.15446/mo.n67.104270.

Harvard

Gonzales Ccoscco, A. E., Guzmán-Calcina, C. S. and Vega-Ramírez, J. L. (2023) “MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR”, MOMENTO, (67), pp. 22–38. doi: 10.15446/mo.n67.104270.

IEEE

[1]
A. E. Gonzales Ccoscco, C. S. Guzmán-Calcina, and J. L. Vega-Ramírez, “MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR”, Momento, no. 67, pp. 22–38, Jul. 2023.

MLA

Gonzales Ccoscco, A. E., C. S. Guzmán-Calcina, and J. L. Vega-Ramírez. “MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR”. MOMENTO, no. 67, July 2023, pp. 22-38, doi:10.15446/mo.n67.104270.

Turabian

Gonzales Ccoscco, Alberto E., Carmen S. Guzmán-Calcina, and José L. Vega-Ramírez. “MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR”. MOMENTO, no. 67 (July 4, 2023): 22–38. Accessed February 1, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/104270.

Vancouver

1.
Gonzales Ccoscco AE, Guzmán-Calcina CS, Vega-Ramírez JL. MONTE CARLO SIMULATION OF 6, 10 AND 18 MV PHOTON BEAM DOSE DISTRIBUTION IN A BRAIN TUMOR. Momento [Internet]. 2023 Jul. 4 [cited 2025 Feb. 1];(67):22-38. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/104270

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

388

Downloads

Download data is not yet available.