Radiation dosimetry with a Triple-GEM detector
Dosimetría de radiaciones con un detector Triple-GEM
DOI:
https://doi.org/10.15446/mo.n66.104505Keywords:
detectors, dosimetry, medical applications, radiation, x-rays (en)aplicaciones médicas, detectores, dosimetría, radiación, rayos x (es)
Downloads
We studied the properties of the gaseous detector triple-GEM (triple Gas Electron Multiplier) as a dosimeter with different ionizing radiation sources used in medical applications. The detector was calibrated in energy with an Iron-55 radioactive source. We measured doses of radiation from different radioactive sources as well as from a medical portable X-ray machine, and compared them to reference values. The detector presents a linear dependence between radiation intensity and measured dose. A calibration factor of 1.13x104 was found, independently of the radiation source. These results allow us to conclude that the triple-GEM detector has the potential to be used as a dosimeter in medical applications.
Estudiamos las propiedades del detector triple-GEM (multiplicador de gas de electrones triple) como dosímetro, con diferentes fuentes de radiación ionizante utilizadas en aplicaciones médicas. El detector fue calibrado en energía usando una fuente radiactiva de hierro-55. Se midieron las dosis de radiación de diferentes fuentes radiactivas y de un generador médico de rayos X, y se compararon con valores de referencia. El detector presenta una dependencia lineal entre la intensidad de la radiaciÅLon y la dosis medida. Se halló un factor de calibración de 1.13 x104, independiente de la fuente de radiación. Estos resultados nos permiten concluir que el detector triple-GEM tiene el potencial para ser utilizado como dosímetro en aplicaciones médicas.
References
F. Sauli, Nucl Instrum Meth A 386, 531 (1997). https://www.sciencedirect.com/science/article/abs/pii/S0168900296011722
L. Guirl, S. Kane, J. May, J. Miyamoto, and I. Shipsey, Nucl Instrum Meth A 478, 263 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0168900201017685
G. Charpak, R. Bouclier, T. Bressani, J. Favier, and Č. Zupančič, Nucl Instrum Meth 62, 262 (1968). https://www.sciencedirect.com/science/article/abs/pii/0029554X68903716
M. Danielsson, P. Fonte, T. Francke, C. Iacobaeus, J. Ostling, and V. Peskov, Nucl Instrum Meth 518, 406 (2004). https://www.sciencedirect.com/science/article/abs/pii/S0168900203028924
A. S. Alghamdi, M. S. Alanazi, and et al., Image Sensors and Imaging Systems 2015, SPIE Proc 9403, 94030S (2015). https://www.lens.org/lens/scholar/article/038-209-926-796-513/main
J. Ostling, A. Brahme, and et al., IEEE T Nucl SC 50, 809 (2003). https://ieeexplore.ieee.org/document/1221880
G. Croci, L. Ropelewski, F. Sauli, and P. Solevi, Nucl Instrum Meth A 582, 693 (2007). https://www.sciencedirect.com/science/article/abs/pii/S0168900207019249
S. Bachmann, S. Kappler, B. Ketzer, T. Mϋller, L. Ropelewski, F. Sauli, and E. Schulte, Nucl Instrum Meth A 478, 104 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0168900201017193
S. Fetal, C. van Eijk, F. Fraga, J. de Haas, R. Kreuger, T. van Vuure, and J. Schippers, Nucl Instrum Meth A 513, 42 (2003). https://www.sciencedirect.com/science/article/abs/pii/S0168900203021338
F. Sauli, Nucl Instrum Meth A 505, 195 (2003). https://www.sciencedirect.com/science/article/abs/pii/S0168900203010507
J. Timmer, T. van Vuure, V. Bom, C. van Eijk, J. de Haas, and J. Schippers, Nucl Instrum Meth A 478, 98 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0168900201017181
E. Seravalli, M. De Boer, F. Geurink, J. Huizenga, R. Kreuger, J. Schippers, and C. Van Eijk, Phys Med Biol 54, 3755 (2009). https://iopscience.iop.org/article/10.1088/0031-9155/54/12/010
A. Velásquez and H. Castro, Nucl Instrum Meth A 1000, 165241 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0168900221002254
F. Murtas, Development of a gaseous detector based on gas electron multiplier (gem) technology (2002), National Laboratory of Frascati, Istituto Nazionale di Fisica Nucleare. http://www.lnf.infn.it/seminars/talks/murtas_28_11_02.pdf
F. Sauli, Nucl Instrum Meth A 805, 2 (2016). https://www.sciencedirect.com/science/article/pii/S0168900215008980
J. Wulff, Clinical dosimetry in photon radiotherapy. a montecarlo based investigation (2010). https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/042/47042513.pdf?r=1
P. Andreo, D. T. Burns, and et al., Fundamentals of ionizing radiation dosimetry (John Wiley & Sons, 2017). https://books.google.com.co/books?hl=es&lr=&id=Xt6YDwAAQBAJ&oi=fnd&pg=PR19&dq=Fundamentals+of+ionizing+radiation+dosimetry&ots=pyN98pt_s3&sig=Rc3o42Jo-3w3Tt5HYRC6Ts8ZhfE&redir_esc=y#v=onepage&q=Fundamentals%20of%20ionizing%20radiation%20dosimetry&f=false
K. Kainz, Medical Physics 33, 1920 (2006). https://aapm.onlinelibrary.wiley.com/doi/10.1118/1.2201870
R. Besancon, The encyclopedia of physics (Springer Science & Business Media, 2013). https://books.google.com.co/books?hl=es&lr=&id=OWTlBwAAQBAJ&oi=fnd&pg=PR3&dq=The+encyclopedia+of+physics&ots=bghVN9nW20&sig=ff0boQON6edZatXgoOA0vPidsCk&redir_esc=y#v=onepage&q=The%20encyclopedia%20of%20physics&f=false
S. Chappell and J. Sparrow, Radiation Research 32, 383 (1967). https://www.jstor.org/stable/3572255
L. Cruz, Caracterización y prueba de la cámara de ionizacón triple-GEM a partir de muones resultantes de rayos cósmicos, Master’s thesis, Universidad de los Andes (2014). https://repositorio.uniandes.edu.co/handle/1992/12870
M. Zecchin, Characterization of a triple-GEM detector prototype for the CMS muon spectrometer upgrade with GEM detectors., Master’s thesis, Universit´e Libre de Bruxelles (2014). https://iihe.ac.be/sites/default/files/thesis-marco-zecchin-cms-master-2014pdf/thesis-marco-zecchin-cms-master-2014.pdf
R. N. Patra, R. N. Singaraju, and et al., Nucl. Instrum. Methods. Phys. Res. B 862, 25 (2017). https://www.sciencedirect.com/science/article/pii/S0168900217305405
NIST, Xcom: Photon cross sections database, https://www.nist.gov/pml/xcom-photon-cross-sections-database (2022). https://www.nist.gov/pml/xcom-photon-cross-sections-database
Standard Reference Database 126 NIST, X-Ray Mass Attenuation Coefficients - Argon, https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z18.html.
J. T. Bushberg, The essential physics of medical imaging (Lippincott Williams & Wilkins, 2002). https://books.google.com.co/books?hl=es&lr=&id=tqM8IG3f8bsC&oi=fnd&pg=PR1&dq=The+essential+physics+of+medical+imaging&ots=9onC2UhSkq&sig=fIHKYNVUumKXs4qkTvh_tAJuyNE&redir_esc=y#v=onepage&q&f=false
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.