Published

2024-01-02

CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION

ESTIMACIÓN DE SECCIONES EFICACES PARA REACCIONES NUCLEARES DE IONES PESADOS CON UN CÓDIGO DE CASCADAS DE FUSIÓN EVAPORACIÓN

DOI:

https://doi.org/10.15446/mo.n68.106810

Keywords:

PACE, nuclear reaction, fusion-evaporation, decay cascade (en)
cascada de decaimientos, PACE, reacción nuclear, fusión-evaporación (es)

Downloads

Authors

This article presents a study of fusion-evaporation nuclear reactions. Starting from a detailed description of the semi-classical theoretical framework behind this nuclear reaction, quantities such as the cross section of compound nucleus formation and various evaporation residues after its formation, as well as their cross sections (proportional to the events number), were estimated by means of a Python code. The code splits the compound nucleus formation process and its subsequent decay into several residual nuclei, which occurs as a sequential particle emission. In order to prioritize a first approximation theory, different nuclear models, with semi-classical and statistical origin, related to projectile-target fusion, light particle evaporation (n, p, α) and fission, were described in detail.

The values obtained with the computational routine developed were compared with experimental values and results from the PACE code. Cross sections were calculated for about 90 proposed reactions that produce residues with excess protons. In general, the results obtained show significant discrepancies, especially in heavy nuclei reactions, although some agreements are found even taking into account the limitations of the code. The main reason for this discrepancy may be associated with the lack or overestimation of some channels which may affect the proportion of events. This motivates a more sophisticated analysis in the future that could allow a wider range of channels.

En este artículo se presenta un estudio de las reacciones nucleares de fusión-evaporación. Partiendo de una descripción detallada de la teoría semi-cl´asica detrás de la reacción, se estimaron cantidades como la sección eficaz de formación del núcleo compuesto y diferentes residuos de la evaporación después de su formación, así como sus secciones eficaces (proporcionales al número de eventos), por medio de un código de Python. El código divide el proceso de formación del núcleo compuesto y su posterior decaimiento en varios núcleos residuales, lo que ocurre como una emisión secuencial de partículas. Para priorizar una descripción de primera aproximación, la teoría recopilada aborda diferentes modelos nucleares, de origen semi-clásico y estadístico, relacionados a los procesos de fusión proyectil-blanco, evaporación de partículas ligeras (n, p, α) y fisión.
Los valores obtenidos con la rutina computacional desarrollada se compararon con valores experimentales y resultados provenientes del c´odigo PACE. Se calcularon las secciones eficaces para alrededor de 90 reacciones propuestas que producen residuos con exceso de protones. Los resultados obtenidos, en general, muestran notables discrepancias, sobre todo en reacciones de núcleos pesados, aunque se encuentran diversas coincidencias incluso teniendo en cuenta las limitaciones del código. La razón principal para esta discrepancia puede estar asociada a la falta o sobreestimaci´on de ciertos canales que puedan alterar la proporci´on de los eventos. Esto motiva una análisis más sofisticado en el futuro que pueda permitir una mayor variedad de canales.

References

A. Lightfoot, Analysis of the charge state distribution produced in a 78Kr + 98Mo fusion evaporation reaction utilizing the MARA separator (master thesis) (University of Jyväskylä, Finland, 2016). https://jyx.jyu.fi/bitstream/handle/123456789/51817/URN:NBN:fi:jyu-201611034564.pdf?isAllowed=y&sequence=1

E. Khaleel, Study of fusion evaporation channels in the 18O + 18O reaction at 65 MeV (master thesis) (Stellenbosch University, South Africa, 2011). https://core.ac.uk/download/pdf/37344866.pdf

K. Krane, Introductory Nuclear Physics (John Wiley & Sons, Inc., 1988). https://books.google.com.co/books/about/Introductory_Nuclear_Physics.html?id=ConwAAAAMAAJ&redir_esc=y

A. Kamal, Nuclear Physics (Springer-Verlag Berlin Heidelberg, 2014). https://books.google.com.co/books/about/Nuclear_Physics.html?id=8G31AwAAQBAJ&redir_esc=y

P. Fröbrich and R. Lipperheide, Theory of Nuclear Reactions (Oxford University Press Inc., 1996). https://books.google.com.co/books/about/Theory_of_Nuclear_Reactions.html?id=fFLhwE9C-qAC&redir_esc=y DOI: https://doi.org/10.1093/oso/9780198537830.001.0001

R. Bass, Phys. Rev. Lett. 39, 265 (1977). http://dx.doi.org/10.1103/PhysRevLett.39.265 DOI: https://doi.org/10.1103/PhysRevLett.39.265

B. Blank, G. Canchel, F. Seis, and P. Delahaye, Nucl. Instrum. Methods Phys. Res. B 416, 41 (2018). http://dx.doi.org/ https://doi.org/10.1016/j.nimb.2017.12.003 DOI: https://doi.org/10.1016/j.nimb.2017.12.003

O. Tarasov and D. Bazin, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, 4657 (2008). http://dx.doi.org/https://doi.org/10.1016/j.nimb.2008.05.110 DOI: https://doi.org/10.1016/j.nimb.2008.05.110

A. Gavron, Phys. Rev. C 21, 230 (1980). http://dx.doi.org/10.1103/PhysRevC.21.230 DOI: https://doi.org/10.1103/PhysRevC.21.230

LISE++ group from NSCL-MSU, “PACE4: GUI evaporation code. http://lise.nscl.msu.edu/pace4.html,” (2021). http://lise.nscl.msu.edu/pace4.html

D. Castiblanco, Estimación de cantidades físicas involucradas en reacciones nucleares de fusión y transferencia de nucleones (unpublished bachelor thesis) (Universidad Nacional de Colombia, Colombia, 2022). https://books.google.com.sv/books?id=VzDpBwAAQBAJ

A. J. Cole, Statistical Models for Nuclear Decay: From Evaporation to Vaporization, Fundamental and Applied Nuclear Physics (IOP Publishing Ltd., 2000). https://books.google.com.sv/books?id=VzDpBwAAQBAJ

National Nuclear Data Center, “NuDat 3.0 database,” Consulted in January 22, 2022. (2019). https://www.nndc.bnl.gov/nudat/

C. Y. Wong, Phys. Rev. Lett. 31, 766 (1973). http://dx.doi.org/10.1103/PhysRevLett.31.766 DOI: https://doi.org/10.1103/PhysRevLett.31.766

A. J. Sierk, Phys. Rev. C 33, 2039 (1986). http://dx.doi.org/10.1103/PhysRevC.33.2039 DOI: https://doi.org/10.1103/PhysRevC.33.2039

G. Henning, “A python reimplementation of A. Sierk’s BARFIT,” (2021), working paper or preprint. https://hal.archives-ouvertes.fr/hal-03132426

A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965). http://dx.doi.org/10.1139/p65-139 DOI: https://doi.org/10.1139/p65-139

H. Lu, A. Marchix, Y. Abe, and D. Boilley, Comput. Phys. Commun. 200, 381 (2016). http://dx.doi.org/10.1016/j.cpc.2015.12.003 DOI: https://doi.org/10.1016/j.cpc.2015.12.003

D. Castiblanco, “fus-evap-code (GitHub repository). https://github.com/ddcastiblancoc/fus-evap-code

How to Cite

APA

Castiblanco, D. (2024). CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION. MOMENTO, (68), 52–68. https://doi.org/10.15446/mo.n68.106810

ACM

[1]
Castiblanco, D. 2024. CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION. MOMENTO. 68 (Jan. 2024), 52–68. DOI:https://doi.org/10.15446/mo.n68.106810.

ACS

(1)
Castiblanco, D. CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION. Momento 2024, 52-68.

ABNT

CASTIBLANCO, D. CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION. MOMENTO, [S. l.], n. 68, p. 52–68, 2024. DOI: 10.15446/mo.n68.106810. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/106810. Acesso em: 30 jul. 2024.

Chicago

Castiblanco, Daniel. 2024. “CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION”. MOMENTO, no. 68 (January):52-68. https://doi.org/10.15446/mo.n68.106810.

Harvard

Castiblanco, D. (2024) “CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION”, MOMENTO, (68), pp. 52–68. doi: 10.15446/mo.n68.106810.

IEEE

[1]
D. Castiblanco, “CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION”, Momento, no. 68, pp. 52–68, Jan. 2024.

MLA

Castiblanco, D. “CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION”. MOMENTO, no. 68, Jan. 2024, pp. 52-68, doi:10.15446/mo.n68.106810.

Turabian

Castiblanco, Daniel. “CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION”. MOMENTO, no. 68 (January 3, 2024): 52–68. Accessed July 30, 2024. https://revistas.unal.edu.co/index.php/momento/article/view/106810.

Vancouver

1.
Castiblanco D. CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION. Momento [Internet]. 2024 Jan. 3 [cited 2024 Jul. 30];(68):52-68. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/106810

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

214

Downloads

Download data is not yet available.