AN INTERFERENCE FREE ABSORPTION IN THE MID-INFRARED TO FOLLOW THE OBTAINING OF BIODIESEL BY TRANSESTERIFICATION OF WASTE FRYING OILS
ABSORCIÓN LIBRE DE INTERFERENCIAS EN EL INFRAROJO MEDIO PARA SEGUIR LA OBTENCIÓN DE BIODIESEL POR TRANSESTERIFICACIÓN DE DESECHOS DE FRITURAS
DOI:
https://doi.org/10.15446/mo.n67.107249Keywords:
biofuel, biodisel, infrared-spectroscopy, transesterification, vegetable oils (en)biodisel, espectroscopía infrarojo, transesterificación, aceites vegetales (es)
Downloads
To trace the production of biodiesel in a base-catalyzed transesterification of waste frying oils and methanol, mid infrared spectra were acquired by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) of the organic phases isolated from the reaction medium at 0, 5, 15, 30, and 60 minutes from the start of the process and analyzed qualitatively in comparison with the IR spectrum of the waste oil in its initial condition. Among all the signals or regions of the infrared spectrum proposed by other authors as suitable for monitoring the biodiesel content in blends, which were indeed observed in these ATR FTIR spectra, the signal at 1195 cm−1, attributable to the stretching of the bond between sp2 carbon and oxygen in methyl carboxylate -(CO)-OCH3 resulted in the most suitable signal to follow the biodiesel production in the reaction medium through the IR spectrum of the corresponding isolated organic phase. The signal at 1195 cm−1 appeared only in the infrared spectra of the organic phases containing some biodiesel, and its intensity increased steadily during the reaction. For the rest of the signals proposed in previous publications as useful for quantifying biodiesel in mixtures, it was demonstrated, by these infrared spectra, that there is interference by signals attributable to species, other than biodiesel, present in the mixture.
Con el fin de rastrear la producción de biodiesel en una transesterificación catalizada por base de aceites usados de fritura y metanol, se adquirieron los espectros en el infrarrojo medio por reflectancia total atenuada con transformada de Fourier (ATR-FTIR) de las fases orgánicas aisladas del medio de reacción a los 0, 5, 15, 30 y 60 minutos desde el inicio del proceso y se analizaron cualitativamente en comparación con el espectro IR del aceite usado en su condición inicial. Entre todas las señales o regiones del espectro infrarrojo propuestas por otros autores como adecuadas para monitorear el contenido del biodiesel en mezclas, que efectivamente se observaron en estos espectros ATR-FTIR, la señal a 1195 cm−1, atribuible al estiramiento del enlace entre el carbono sp2 y el oxígeno en el carboxilato de metilo, -(CO)-OCH3, resultó la señal más adecuada para seguir la producción de biodiesel en el medio de reacción a través del espectro IR de la correspondiente fase orgánica aislada. La señal a 1195 cm−1 apareció únicamente en los espectros infrarrojos de las fases orgánicas que contenían algo de biodiesel, y su intensidad aumentó de manera regular en el curso de la reacción. Para el resto de señales propuestas en publicaciones anteriores como útiles para cuantificar el biodiesel en mezclas, se demostró, por estos espectros infrarrojos, que existe interferencia por señales atribuibles a especies, distintas al biodiesel, presentes en la mezcla.
References
P. R. Epstein, J. J. Buonocore, and et al., Ann. N. Y. Acad. Sci. 1219, 73 (2011). https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2010.05890.x
D. O’Rourke and S. Connolly, Annu Rev Environ Resour 28, 587 (2003). https://www.annualreviews.org/doi/10.1146/annurev.energy.28.050302.105617
Environmental Protection Agency (EPA), Acid rain. (accessed 7 february 2019). https://www.epa.gov/acidrain
A. R. Mohammed and C. Bandari, Biofuels 11, 409 (2017). https://www.tandfonline.com/doi/full/10.1080/17597269.2017.1370882 DOI: https://doi.org/10.1080/17597269.2017.1370882
T. A. Degfie, T. T. Mamo, and Y. S. Mekonnen, Sci. Rep. 9, 1 (2019). https://www.nature.com/articles/s41598-019-55403-4 DOI: https://doi.org/10.1038/s41598-019-55403-4
N. Akkarawatkhoosith, A. Kaewchada, C. Ngamcharussrivichai, and A. Jaree, Bioenergy Res. 13, 542 (2020). https://link.springer.com/article/10.1007/s12155-019-10051-4 DOI: https://doi.org/10.1007/s12155-019-10051-4
P. E. Ahranjani, M. Kazemeini, and A. Arpanaei, Bioenergy Res. 13, 552 (2020). https://link.springer.com/article/10.1007/s12155-019-10022-9 DOI: https://doi.org/10.1007/s12155-019-10022-9
K. Mathiesen, The Guardian. Are biofuels worse than fossil fuels? (accessed 7 February 2019). https://www.theguardian.com/environment/2013/nov/29/biofuels-worse-fossil-fuels-food-crops-greenhouse-gases
E. Avella-Moreno, MOMENTO 44, 35 (2012). https://revistas.unal.edu.co/index.php/momento/article/view/38738
M. Hirtzer, U.S. renewable fuel credits pressured by biodiesel tax credit optimism (accessed 7 February 2019). https://www.reuters.com/article/idUSL1N1OL2EZ
M. L. Pisarello, M. Maquirriain, P. S. Olalla, V. Rossi, and C. A. Querini, Fuel Process. Technol. 181, 244 (2018). https://linkinghub.elsevier.com/retrieve/pii/S0378382018312979 DOI: https://doi.org/10.1016/j.fuproc.2018.09.028
F. Menges, Spectragryph - optical spectroscopy software. Version 1 (2016). https://www.effemm2.de/spectragryph/
J. F. García Martín, M. López Barrera, M. Torres-Garcia, Q.-A. Zhang, and P. ´Alvarez-Mateos, Processes 7, 304 (2019). https://www.mdpi.com/2227-9717/7/5/304 DOI: https://doi.org/10.3390/pr7050304
W.-B. Zhang, Renewable Sustainable Energy Rev. 16, 6048 (2012). https://www.sciencedirect.com/science/article/abs/pii/S1364032112004443?via%3Dihub DOI: https://doi.org/10.1016/j.rser.2012.07.003
M. A. Dubé, S. Zheng, D. D. McLean, and M. Kates, JAOCS 81, 599 (2004). https://aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11746-006-0948-x DOI: https://doi.org/10.1007/s11746-006-0948-x
N. Siatis, A. Kimbaris, C. Pappas, P. Tarantilis, and M. Polissiou, JAOCS 83, 53 (2006). https://link.springer.com/article/10.1007/s11746-006-1175-1 DOI: https://doi.org/10.1007/s11746-006-1175-1
M. G. Trevisan, C. M. Garcia, U. Schuchardt, and R. J. Poppi, Talanta 74, 971 (2008). https://www.semanticscholar.org/paper/Evolving-factor-analysis-based-method-for-delay-in-Trevisan-Garcia/3a33931e86ffc5e6fe82801224eb5f07769da9df
A. P. Ault and R. Pomeroy, J. Chem. Educ. 89, 243 (2011). https://pubs.acs.org/doi/10.1021/ed101097n DOI: https://doi.org/10.1021/ed101097n
M. F. Ferrão, M. de Souza Viera, R. E. P. Pazos, D. Fachini, A. E. Gerbase, and L. Marder, Fuel 90, 701 (2011). https://www.sciencedirect.com/science/article/pii/S0016236110004874?via%3Dihub DOI: https://doi.org/10.1016/j.fuel.2010.09.016
D. M. Pinho, V. O. Santos, and et al., Fuel 136, 136 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0039914017303119?via%3Dihub DOI: https://doi.org/10.1016/j.fuel.2014.07.043
G. G. Shimamoto, L. F. Bianchessi, and M. Tubino, Talanta 168, 121 (2017). https://www.sciencedirect.com/science/article/abs/pii/S0039914017303119?via%3Dihub DOI: https://doi.org/10.1016/j.talanta.2017.03.027
V. H. J. d. Santos, E. D. C. Bruzza, J. E. de Lima, R. V. Lourega, and L. F. Rodrigues, Energy & Fuels 30, 4905 (2016). https://pubs.acs.org/doi/10.1021/acs.energyfuels.6b00447 DOI: https://doi.org/10.1021/acs.energyfuels.6b00447
P. J. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation (Elsevier, 2018). https://www.sciencedirect.com/book/9780128041628/infrared-and-raman-spectroscopy DOI: https://doi.org/10.1016/B978-0-12-804162-8.00002-1
B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (J. Wiley & Sons, 2004). https://onlinelibrary.wiley.com/doi/book/10.1002/0470011149 DOI: https://doi.org/10.1002/0470011149
C. G. Chol, R. Dhabhai, A. K. Dalai, and M. Reaney, Fuel Process. Technol. 178, 78 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0378382017321859?via%3Dihub DOI: https://doi.org/10.1016/j.fuproc.2018.05.023
S. O'Donnell, I. Demshemino, M. Yahaya, I. Nwandike, and L. Okoro, EIJST 2, 137 (2013). https://eijst.org.uk/images/frontImages/gallery/Vol._2_No._7/15.pdf
T. Yuan, E. Akochi-Koble, D. Pinchuk, and F. R. van de Voort, Intern. j. renew. energy biofuels. 2014, 1 (2014). https://ibimapublishing.com/articles/IJREB/2014/178474/ DOI: https://doi.org/10.5171/2014.178474
N. N. Mahamuni and Y. G. Adewuyi, Energy & Fuels 23, 3773 (2009). https://pubs.acs.org/doi/10.1021/ef900130m DOI: https://doi.org/10.1021/ef900130m
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.