Published

2023-07-04

ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES

RESPUESTA DIPOLAR ISOESCALAR EN LOS ISÓTOPOS 92Mo Y 100Mo

DOI:

https://doi.org/10.15446/mo.n67.107907

Keywords:

strength distribution, isoscalar dipole response, skyrme forcé, Hartree-Fock-Bardeen-Cooper-Schrieffer, HF BCS, quasiparticle random phase approximation, QRPA (en)
distribución de fuerza, respuesta dipolar isoescalar, fuerza de skyrme, Hartree-Fock-Bardeen-Cooper-Schrieffer, HF BCS, aproximación de fase aleatoria de cuasipartículas, QRPA (es)

Downloads

Authors

  • Gullala A. Mohammed Kirkuk University image/svg+xml
  • Ali H. Taqi Kirkuk University

In this work, the Isoscalar (IS) Giant Dipole Resonance (GDR) and Pygmy Dipole Resonance (PDR) of 92Mo and 100Mo Isotopes were calculated in the farmwork of the self-consistent quasi-particle random phase approximation (QRPA) based on the results of Hartree-Fock-Bardeen, Cooper and Schrieffer (HF-BCS) using 10 Skyrme-type interactions: KDE0v1, eMSL08, SKX, SGOI, v080, SKP, SIV, SIII, SKIII, and SGI. The strength distributions of isoscalar dipole response were compared with the available experimental data. Also, we discussed the statistical relation between the centroid energy and the nuclear matter incompressibility KNM.

En este trabajo se calcularon las resonancias dipolares gigantes (GDR) isoescalares y las resonancias dipolares pigmeas (PDR) de los isótopos 92Mo y 100Mo en el marco de la aproximación de fase aleatoria de cuasipartículas autoconsistente (QRPA) basada en los resultados de Hartree-Fock-Bardeen, Cooper y Schrieffer (HF-BCS) utilizando 10 interacciones de tipo Skyrme: KDE0v1, eMSL08, SKX, SGOI, v080, SKP, SIV, SIII, SKIII y SGI. Se compararon las distribuciones de fuerza de la respuesta dipolar isoescalar con los datos experimentales  disponibles. Además, se discutió la relación estadística entre la energía del centroide y la incompresibilidad de la materia nuclear KNM.

References

E. Caurier, P. Navrátil, W. E. Ormand, and J. P. Vary, Phys. Rev. C 66, 024314 (2002). Isoscalar dipole response in 92Mo and 100Mo sotopes 113. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.66.024314

S. Beane and e. a. Chang, Phys. Rev. Lett. 115, 132001 (2015). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.132001

S. Koonin, D. Dean, and K. Langanke, Phys. Rep. 278, 1 (1997). https://www.sciencedirect.com/science/article/abs/pii/S0370157396000178 DOI: https://doi.org/10.1016/S0370-1573(96)00017-8

T. Otsuka, Nucl. Phys. A 693, 383 (2001). https://www.sciencedirect.com/science/article/abs/pii/S0375947400006059 DOI: https://doi.org/10.1016/S0375-9474(00)00605-9

P. Reinhard, Rep. Prog. Phys. 52, 439 (1989). https://iopscience.iop.org/article/10.1088/0034-4885/52/4/002

J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger, C. R. Chinn, and J. Dechargé, Phys. Rev. C 53, 2809 (1996). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.53.2809

J. Dobaczewski, M. Stoitsov, and W. Nazarewicz, AIP Conf. Proc. 726, 51 (2004). https://arxiv.org/abs/nucl-th/0404077

T. Werner, J. Sheikh, W. Nazarewicz, M. Strayer, and A. Umar, Phys. Lett. B 335, 259 (1994). https://www.sciencedirect.com/science/article/abs/pii/0370269394903476 DOI: https://doi.org/10.1016/0370-2693(94)90347-6

M. L. Gorelik, S. Shlomo, and M. H. Urin, Phys. Rev. C 62, 044301 (2000). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.62.044301

D. Vretenar, A. Wandelt, and P. Ring, Phys. Lett. B 487, 334 (2000). https://www.sciencedirect.com/science/article/abs/pii/S0370269300008273 DOI: https://doi.org/10.1016/S0370-2693(00)00827-3

S. Shlomo and A. Sanzhur, Phys. Rev. C 65, 044310 (2002). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.65.044310

M. Harakeh and A. van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitations (Oxford St. in Nucl Phys., 2001). https://global.oup.com/academic/product/giant-resonances-9780198517337?q=Giant%20Resonances:%20Fundamental%20High-Frequency%20Modes%20of%20Nuclear%20Excitations&cc=co&lang=en

M. Harakeh and A. Dieperink, Phys. Rev. C 23, 2329 (1981). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.23.2329

S. Stringari, Phys. Lett. B 108, 232 (1982). https://www.sciencedirect.com/science/article/abs/pii/0370269382911820 DOI: https://doi.org/10.1016/0370-2693(82)91182-0

G. Colò, N. Van Giai, P. Bortignon, and M. Quaglia, Phys. Lett. B 485, 362 (2000). https://www.sciencedirect.com/science/article/abs/pii/S0370269300007255 DOI: https://doi.org/10.1016/S0370-2693(00)00725-5

S. Shlomo and A. Sanzhur, Phys. Rev. C 65, 044310 (2002). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.65.044310

R. Pitthan and T. Walcher, Phys. Lett. B 36, 563 (1971). https://www.sciencedirect.com/science/article/abs/pii/0370269371900906 DOI: https://doi.org/10.1016/0370-2693(71)90090-6

S. Fukuda and Y. Torizuka, Phys. Rev. Lett. 29, 1109 (1972). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.29.1109

M. Lewis and F. Bertrand, Nucl. Phys. A 196, 337 (1972). https://www.sciencedirect.com/science/article/abs/pii/0375947472909682 DOI: https://doi.org/10.1016/0375-9474(72)90968-2

M. Harakeh, K. van der Borg, T. Ishimatsu, H. Morsch, A. van der Woude, and F. Bertrand, Phys. Rev. Lett. 38, 676 (1977). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.38.676

D. Youngblood, C. Rozsa, J. Moss, D. Brown, and J. Bronson, Phys. Rev. Lett. 39, 1188 (1977). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.39.1188

A. van derWoude and J. Speth, The electric giant resonances., Vol. 24 (Singapore: World Scientific, 1991). 114 Gullala A. Mohammed, Ali H. Taqi https://inis.iaea.org/search/search.aspx?orig_q=RN:24062314

D. H. Youngblood, P. Bogucki, J. D. Bronson, U. Garg, Y. W. Lui, and C. M. Rozsa, Phys. Rev. C 23, 1997 (1981). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.23.1997

M. M. Sharma, W. T. A. Borghols, S. Brandenburg, S. Crona, A. van der Woude, and M. N. Harakeh, Phys. Rev. C 38, 2562 (1988). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.38.2562

H. P. Morsch, M. Rogge, P. Turek, and C. Mayer-B¨oricke, Phys. Rev. Lett. 45, 337 (1980). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.337

B. F. Davis, U. Garg, W. Reviol, M. N. Harakeh, A. Bacher, G. P. A. Berg, C. C. Foster, E. J. Stephenson, Y. Wang, J. J¨anecke, K. Pham, D. Roberts, H. Akimune, M. Fujiwara, and J. Lisantti, Phys. Rev. Lett. 79, 609 (1997). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.609

H. Clark, Y.-W. Lui, D. Youngblood, K. Bachtr, U. Garg, M. Harakeh, and N. Kalantar-Nayestanaki, Nuc. Phys. A 649, 57 (1999). https://www.sciencedirect.com/science/article/abs/pii/S0375947499000391 DOI: https://doi.org/10.1016/S0375-9474(99)00039-1

H. L. Clark, Y.-W. Lui, and D. H. Youngblood, Phys. Rev. C 63, 031301 (2001). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.63.031301

A. Bohr and B. Mottelson, Nuclear Structure, Volume II: Nuclear Deformations, Vol. II (W. A. Benjamin, 1975). https://www.amazon.com/Nuclear-Structure-II-Deformations/dp/0805310169

S. Shlomo and D. H. Youngblood, Phys. Rev. C 47, 529 (1993). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.47.529

D. R. Lide, J. Am. Chem. Soc. 129, 724 (2007). https://pubs.acs.org/doi/10.1021/ja069813z

A. Moalem, Y. Gaillard, A. Bemolle, M. Buenerd, J. Chauvin, G. Duhamel, D. Lebrun, P. Martin, G. Perrin, and P. de Saintignon, Phys. Rev. C 20, 1593 (1979). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.20.1593

G. Duhamel, M. Buenerd, P. de Saintignon, J. Chauvin, D. Lebrun, P. Martin, and G. Perrin, Phys. Rev. C Nucl. Phys. 38, 2509 (1988). https://pubmed.ncbi.nlm.nih.gov/9955092/ DOI: https://doi.org/10.1103/PhysRevC.38.2514

D. H. Youngblood, Y. Lui, Krishichayan, J. Button, M. R. Anders, M. L. Gorelik, M. H. Urin, and S. Shlomo, Phys. Rev. C 88, 021301 (2013). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.88.021301

D. H. Youngblood, Y.-W. Lui, Krishichayan, J. Button, G. Bonasera, and S. Shlomo, Phys. Rev. C 92, 014318 (2015). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.92.014318

Krishichayan, Y. Lui, J. Button, D. H. Youngblood, G. Bonasera, and S. Shlomo, Phys. Rev. C 92, 044323 (2015). https://link.aps.org/accepted/10.1103/PhysRevC.92.044323

D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 65, 034302 (2002). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.65.034302

D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 63, 067301 (2001). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.63.067301

Y.-W. Lui, H. L. Clark, and D. H. Youngblood, Phys. Rev. C 61, 067307 (2000). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.61.067307

D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 60, 014304 (1999). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.60.014304

P.-G. Reinhard, Ann. Phys. 504, 632 (1992). https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19925040805

B. K. Agrawal, S. Shlomo, and V. Kim Au, Phys. Rev. C 72, 014310 (2005). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.72.014310

Z. Zhang and L.-W. Chen, Phys. Rev. C 94, 064326 (2016). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.064326

B. Alex Brown, Phys. Rev. C 58, 220 (1998). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.58.220

Q.-B. Shen, Y.-L. Han, and H.-R. Guo, Phys. Rev. C 80, 024604 (2009). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.80.024604

J. M. Pearson and S. Goriely, Phys. Rev. C 64, 027301 (2001). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.64.027301

P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J. A. Maruhn, and M. R. Strayer, Phys. Rev. C 60, 014316 (1999). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.60.014316

B. A. Brown, G. Shen, G. C. Hillhouse, J. Meng, and A. Trzci´nska, Phys. Rev. C 76, 034305 (2007). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.76.034305

H. Köhler, Nucl. Phy. A 258, 301 (1976). https://www.sciencedirect.com/science/article/abs/pii/0375947476900087 DOI: https://doi.org/10.1016/0375-9474(76)90008-7

S. Krewald, V. Klemt, J. Speth, and A. Faessler, Nucl. Phy. A 281, 166 (1977). https://www.sciencedirect.com/science/article/abs/pii/0375947477900197 DOI: https://doi.org/10.1016/0375-9474(77)90019-7

P. Bonche, H. Flocard, P. Heenen, S. Krieger, and M. Weiss, Nucl. Phy. A 443, 39 (1985). https://www.sciencedirect.com/science/article/abs/pii/0375947485903203 DOI: https://doi.org/10.1016/0375-9474(85)90320-3

M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003). https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.75.121

D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.5.626

E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998). https://www.sciencedirect.com/science/article/abs/pii/S0375947498001808 DOI: https://doi.org/10.1016/S0375-9474(98)00180-8

W. Ryssens, V. Hellemans, M. Bender, and P.-H. Heenen, Comp. Phys. Commun. 187, 175 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0010465514003361 DOI: https://doi.org/10.1016/j.cpc.2014.10.001

D. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, 2010). https://books.google.com.co/books?id=uXV2Vk9c46gC DOI: https://doi.org/10.1142/6721

P. Ring and P. Schuck, The Nuclear Many Body Problem 116 Gullala A. Mohammed, Ali H. Taqi (Springer, 1980). https://link.springer.com/book/9783540212065 DOI: https://doi.org/10.1007/978-3-642-61852-9

G. Colò, L. Cao, N. Van Giai, and L. Capelli, Comp. Phys. Commun. 184, 142 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0010465512002627?via%3Dihub DOI: https://doi.org/10.1016/j.cpc.2012.07.016

A. H. Taqi and G. L. Alawi, Nucl. Phys. A 983, 103 (2019). https://www.sciencedirect.com/science/article/abs/pii/S037594741930003X DOI: https://doi.org/10.1016/j.nuclphysa.2019.01.001

A. H. Taqi and G. L. Alawi, Nucl. Phys. At. Energy 19, 326 (2018). http://jnpae.kinr.kiev.ua/19.4/Articles_PDF/jnpae-2018-19-0326-Taqi.pdf DOI: https://doi.org/10.15407/jnpae2018.04.326

S. Amin, A. A. Al-Rubaiee, and A. Taqi, KUJSS 17, 17 (2022). https://kujss.uokirkuk.edu.iq/article_175807.html DOI: https://doi.org/10.32894/kujss.2022.135889.1073

A. Taqi and M. S. Ali, Indian J.Phys. 92, 69 (2018). https://link.springer.com/article/10.1007/s12648-017-1073-4

J. Button, Y. Lui, D. Youngblood, X. Chen, G. Bonasera, and S. Shlomo, Phys. Rev. C 94, 034315 (2016). https://link.aps.org/accepted/10.1103/PhysRevC.94.034315

How to Cite

APA

Mohammed, G. A. & Taqi, A. H. (2023). ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES. MOMENTO, (67), 101–116. https://doi.org/10.15446/mo.n67.107907

ACM

[1]
Mohammed, G.A. and Taqi, A.H. 2023. ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES. MOMENTO. 67 (Jul. 2023), 101–116. DOI:https://doi.org/10.15446/mo.n67.107907.

ACS

(1)
Mohammed, G. A.; Taqi, A. H. ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES. Momento 2023, 101-116.

ABNT

MOHAMMED, G. A.; TAQI, A. H. ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES. MOMENTO, [S. l.], n. 67, p. 101–116, 2023. DOI: 10.15446/mo.n67.107907. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/107907. Acesso em: 12 feb. 2026.

Chicago

Mohammed, Gullala A., and Ali H. Taqi. 2023. “ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES”. MOMENTO, no. 67 (July):101-16. https://doi.org/10.15446/mo.n67.107907.

Harvard

Mohammed, G. A. and Taqi, A. H. (2023) “ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES”, MOMENTO, (67), pp. 101–116. doi: 10.15446/mo.n67.107907.

IEEE

[1]
G. A. Mohammed and A. H. Taqi, “ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES”, Momento, no. 67, pp. 101–116, Jul. 2023.

MLA

Mohammed, G. A., and A. H. Taqi. “ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES”. MOMENTO, no. 67, July 2023, pp. 101-16, doi:10.15446/mo.n67.107907.

Turabian

Mohammed, Gullala A., and Ali H. Taqi. “ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES”. MOMENTO, no. 67 (July 4, 2023): 101–116. Accessed February 12, 2026. https://revistas.unal.edu.co/index.php/momento/article/view/107907.

Vancouver

1.
Mohammed GA, Taqi AH. ISOSCALAR DIPOLE RESPONSE IN 92Mo AND 100Mo ISOTOPES. Momento [Internet]. 2023 Jul. 4 [cited 2026 Feb. 12];(67):101-16. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/107907

Download Citation

CrossRef Cited-by

CrossRef citations2

1. A.H. Taqi, G.A. Mohammed. (2023). Isoscalar monopole response in the neutron-rich molybdenum isotopes using self-consistent QRPA. Nuclear Physics and Atomic Energy, 24(4), p.306. https://doi.org/10.15407/jnpae2023.04.306.

2. Ali H. Taqi, Maryam A. Akbar. (2024). Theoretical Study of Isoscalar Giant Monopole Resonance in 110,112,114,116Cd Isotopes Using Self-consistent Skyrme HF-BCS and QRPA. Iranian Journal of Science, 48(3), p.805. https://doi.org/10.1007/s40995-024-01619-7.

Dimensions

PlumX

Article abstract page views

268

Downloads

Download data is not yet available.