INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os
INVESTIGACIÓN DE LA ESTRUCTURA NUCLEAR DE LOS ISÓTOPOS 170−180Os
DOI:
https://doi.org/10.15446/mo.n68.109589Keywords:
IBM-1, SEF, NEE, energy levels, electromagnetic transition (en)IBM-1, SEF, NEE, niveles de energía, transición electromagnética (es)
Downloads
Interacting Boson Model (IBM-1), Semi Empirical Formula (SEF), and New Empirical Equation (NEE) methods were utilized to determine the energy states of the ground-state (GS), β and γ-bands in the 170-180Os isotopes. The results of the study on the GS, β, and γ bands suggest that IBM-1, SEF, NEE, and existing empirical evidence show some agreement, albeit with some discrepancies. The NEE results for GS, β, and γ bands are more reliable with empirical data than the estimates derived from the IBM-1 and SEF models. The reduced transition probabilities B(E2) of the IBM-1 model correspond well to the experimental data. In the GSB, the energies of the 6+, 8+, and 10+ states are not precisely modeled in the IBM-1 model. The R4/2 values of low-lying energy levels of Os isotopes fluctuate gradually with increasing neutron numbers. The EPS counter indicates that the transition limit of the 170-180Os isotopes has a rotational–vibrational γ-soft transition.
Se utilizaron los métodos del modelo de bosones en interacción (IBM-1), la fórmula semiempírica (SEF) y la nueva ecuación empírica (NEE) para determinar los estados energéticos del estado fundamental (GS) y las bandas β y γ en los isótopos 170-180Os. Los resultados del estudio para el estado fundamente y para las bandas β y γ sugieren que los m´etodos IBM-1, SEF, NEE y las pruebas empíricas existentes muestran cierta concordancia, aunque con algunas discrepancias. Los resultados de la NEE para el estado fundamental y para las bandas β y γ son más fiables con los datos empíricos que las estimaciones derivadas de los modelos IBM-1 y SEF. Las probabilidades de transición reducidas B(E2) del modelo IBM-1 corresponden correctamente a los datos experimentales. En el GSB, las energías de los estados 6+, 8+ y 10+ no se modelan con precisión en el modelo IBM-1. Los valores R4/2 de los niveles energéticos bajos de los isótopos de Os fluctúan gradualmente con el aumento del número de neutrones. El contador EPS indica que el límite de transición de los isótopos 170-180Os tiene una transición rotacional vibracional γ suave.
References
T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A 309, 1 (1978). https://www.sciencedirect.com/science/article/pii/0375947478905328 DOI: https://doi.org/10.1016/0375-9474(78)90532-8
W. Greiner and J. Reinhardt, Field Quantization (Springer Berlin, Heidelberg, 1996). https://link.springer.com/book/10.1007/978-3-642-61485-9#bibliographic-information DOI: https://doi.org/10.1007/978-3-642-61485-9
F. Pan and J. Draayer, Nucl. Phys. A 636, 156 (1998). https://www.sciencedirect.com/science/article/pii/S0375947498002073 DOI: https://doi.org/10.1016/S0375-9474(98)00207-3
A. Arima and F. Iachello, Ann. Phys. 99, 253 (1976). https://doi.org/10.1016/0003-4916(76)90097-X DOI: https://doi.org/10.1016/0003-4916(76)90097-X
F. Iachello and A. Arima, Phys. Lett. B 53, 309 (1974). https://www.sciencedirect.com/science/article/pii/037026937490389X DOI: https://doi.org/10.1016/0370-2693(74)90389-X
A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975). https://link.aps.org/doi/10.1103/PhysRevLett.35.1069 DOI: https://doi.org/10.1103/PhysRevLett.35.1069
P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010). https://link.aps.org/doi/10.1103/RevModPhys.82.2155 DOI: https://doi.org/10.1103/RevModPhys.82.2155
R. Kumar, S. K. Sharma, and J. B. Gupta, Armen. J. Phys. 3, 150 (2010). https://api.semanticscholar.org/CorpusID:55181870
A. M. Al-Nuaimi, R. Alkhayat, and M. Al-Jubbori, Karbala Int. J. Mod. Sci. 8, 391 (2022). https://kijoms.uokerbala.edu.iq/home/vol8/iss3/9/ DOI: https://doi.org/10.33640/2405-609X.3249
W. Zhang, B. Cederwall, and et al., Phys. Lett. B 820, 136527 (2021). https://www.sciencedirect.com/science/article/pii/S0370269321004676
A. Goasduff, J. Ljungvall, and et al., Phys. Rev. C 100, 034302 (2019). https://link.aps.org/doi/10.1103/PhysRevC.100.034302
P. H. Regan, C. W. Beausang, and et al., Phys. Rev. Lett. 90, 152502 (2003). https://link.aps.org/doi/10.1103/PhysRevLett.90.152502
D. Bonatsos, P. E. Georgoudis, and et al., Phys. Rev. C 88, 034316 (2013). https://link.aps.org/doi/10.1103/PhysRevC.88.034316 DOI: https://doi.org/10.1103/PhysRevC.88.034316
J. B. Gupta and S. Sharma, Indian J. Pure Appl. Phys. 26, 601 (1988).
M. A. Al-Jubbori, H. H. Kassim, and et al., Nucl. Phys. A 970, 438 (2018). https://www.sciencedirect.com/science/article/pii/S037594741830006X DOI: https://doi.org/10.1016/j.nuclphysa.2018.01.005
K. Nomura, T. Otsuka, and et al., Phys. Rev. C 84, 054316 (2011). https://link.aps.org/doi/10.1103/PhysRevC.84.054316 DOI: https://doi.org/10.1103/PhysRevC.84.014302
I. Hossain, H. H. Kassim, and et al., ScienceAsia 42, 22 (2016). https://www.scienceasia.org/content/viewabstract.php?ms=6570 DOI: https://doi.org/10.2306/scienceasia1513-1874.2016.42.022
M. Délèze, S. Drissi, and et al., Nucl. Phys. A 551, 269 (1993). https://www.sciencedirect.com/science/article/pii/037594749390482D DOI: https://doi.org/10.1016/0375-9474(93)90482-D
H. El-Gendy, Nucl. Phys. A 1006, 122117 (2021). https://www.sciencedirect.com/science/article/pii/S0375947420304462 DOI: https://doi.org/10.1016/j.nuclphysa.2020.122117
A. Mohammed-Ali, R. B. Alkhayat, and et al., Rev. Mex. Fis. 68, 060401 (2022). https://rmf.smf.mx/ojs/index.php/rmf/article/view/6039
A. E. L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett. 44, 1747 (1980). https://link.aps.org/doi/10.1103/PhysRevLett.44.1747 DOI: https://doi.org/10.1103/PhysRevLett.44.1747
R. F. Casten, The Interacting Boson Approximation Model, International School of Physics Enrico Fermi, Vol. 169 (IOS Press, 2008) p. 385. https://ebooks.iospress.nl/publication/26710
R. F. Casten and D. D. Warner, Rev. Mod. Phys. 60, 389 (1988). https://link.aps.org/doi/10.1103/RevModPhys.60.389 DOI: https://doi.org/10.1103/RevModPhys.60.389
M. A. Al-Jubbori, H. H. Kassim, and et al., Nucl. Phys. A 955, 101 (2016). https://www.sciencedirect.com/science/article/pii/S0375947416301488 DOI: https://doi.org/10.1016/j.nuclphysa.2016.06.005
M. A. Al-Jubbori, F. S. Radhi, and et al., Nucl. Phys. A 971, 35 (2018). https://www.sciencedirect.com/science/article/pii/S0375947418300125 DOI: https://doi.org/10.1016/j.nuclphysa.2018.01.011
H. H. Kassim, A. A. Mohammed-Ali, and et al., Iran. J. Sci. Technol., Trans. Sci. 42, 993 (2018). https://link.springer.com/article/10.1007/s40995-016-0104-x
S. M. Mutsher, F. I. Sharrad, and E. A. Salman, Nucl. Phys. A 1017, 122342 (2022). https://www.sciencedirect.com/science/article/pii/S0375947421002074 DOI: https://doi.org/10.1016/j.nuclphysa.2021.122342
S. Raman, C. Nestor, and P. Tikkanen, Atom. Data Nucl. Data 78, 1 (2001). https://www.sciencedirect.com/science/article/pii/S0092640X01908587 DOI: https://doi.org/10.1006/adnd.2001.0858
K. Abrahams, K. Allaart, and A. E. L. Dieperink, Nuclear Structure, Vol. 67 (Springer New York, NY, 2012). https://link.springer.com/book/10.1007/978-1-4684-3950-2
F. X. Xu, C. S. Wu, and J. Y. Zeng, Phys. Rev. C 40, 2337 (1989). https://link.aps.org/doi/10.1103/PhysRevC.40.2337 DOI: https://doi.org/10.1103/PhysRevC.40.2337
E. Browne and H. Junde, Nucl. Data Sheets 87, 15 (1999). https://www.sciencedirect.com/science/article/pii/S0090375299900157 DOI: https://doi.org/10.1006/ndsh.1999.0015
M. Basunia, Nucl. Data Sheets 107, 791 (2006). https://www.sciencedirect.com/science/article/pii/S0090375206000202 DOI: https://doi.org/10.1016/j.nds.2006.03.001
C. Baglin, E. McCutchan, and et al., Nucl. Data Sheets 153, 1 (2018). https://www.sciencedirect.com/science/article/pii/S0090375218300796 DOI: https://doi.org/10.1016/j.nds.2018.11.001
E. Achterberg, O. Capurro, and G. Marti, Nucl. Data Sheets 110, 1473 (2009). https://www.sciencedirect.com/science/article/pii/S0090375209000490 DOI: https://doi.org/10.1016/j.nds.2009.05.002
E. McCutchan, Nucl. Data Sheets 126, 151 (2015). https://www.sciencedirect.com/science/article/pii/S0090375215000137 DOI: https://doi.org/10.1016/j.nds.2015.05.002
B. Singh, Nucl. Data Sheets 96, 1 (2002). https://www.sciencedirect.com/science/article/pii/S0090375202900104 DOI: https://doi.org/10.1006/ndsh.2002.0010
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Yasir Y. Kassim, Rabee B. Alkhayat, Huda H. Kassim , Fadhil I. Sharrad . (2025). EVALUATING THE NUCLEAR PROPERTIES OF 120–130Xe ISOTOPES. MOMENTO, (70), p.16. https://doi.org/10.15446/mo.n70.114834.
2. Huda H. Kassim, Asmaa A. Elbndag, Rabee B. Alkhayat, Mushtaq A. Al-Jubbori, I. Hossain, N. Aldahan, Fadhil I. Sharrad. (2024). ESTIMATION OF NUCLEAR STRUCTURE OF 186Hg NUCLEUS BY IBM-1 AND IBM-2 MODELS. MOMENTO, (69), p.101. https://doi.org/10.15446/mo.n69.112749.
3. Mahdi J. S. Al Musawi, Rabee B. Alkhayat, Huda H. Kassim, Asmaa A. Elbndag, Mushtaq A. Al-Jubbori, I. Hossain, Fadhil I. Sharrad, N. Aldahan. (2025). NUCLEAR STRUCTURE OF 182,184Hg ISOTOPES BY IBM-1 AND IBM-2 MODELS. MOMENTO, (70), p.117. https://doi.org/10.15446/mo.n70.116188.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.