Published

2024-01-03

INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os

INVESTIGACIÓN DE LA ESTRUCTURA NUCLEAR DE LOS ISÓTOPOS 170−180Os

DOI:

https://doi.org/10.15446/mo.n68.109589

Keywords:

IBM-1, SEF, NEE, energy levels, electromagnetic transition (en)
IBM-1, SEF, NEE, niveles de energía, transición electromagnética (es)

Downloads

Authors

  • Fatima M. Ali Department of Physics, College of Education for Pure Sciences, University of Mosul, 41001.
  • Mushtaq Abed Al-Jubbori Department of Physics, College of Education for Pure Sciences, University of Mosul, 41001
  • Rabee B. Alkhayat Department of Physics, College of Education for Pure Sciences, University of Mosul, 41001

Interacting Boson Model (IBM-1), Semi Empirical Formula (SEF), and New Empirical Equation (NEE) methods were utilized to determine the energy states of the ground-state (GS), β and γ-bands in the 170-180Os isotopes. The results of the study on the GS, β, and γ bands suggest that IBM-1, SEF, NEE, and existing empirical evidence show some agreement, albeit with some discrepancies. The NEE results for GS, β, and γ bands are more reliable with empirical data than the estimates derived from the IBM-1 and SEF models. The reduced transition probabilities B(E2) of the IBM-1 model correspond well to the experimental data. In the GSB, the energies of the 6+, 8+, and 10+ states are not precisely modeled in the IBM-1 model. The R4/2 values of low-lying energy levels of Os isotopes fluctuate gradually with increasing neutron numbers. The EPS counter indicates that the transition limit of the 170-180Os isotopes has a rotational–vibrational γ-soft transition.

Se utilizaron los métodos del modelo de bosones en interacción (IBM-1), la fórmula semiempírica (SEF) y la nueva ecuación empírica (NEE) para determinar los estados energéticos del estado fundamental (GS) y las bandas β y γ en los isótopos 170-180Os. Los resultados del estudio para el estado fundamente y para las bandas β y γ sugieren que los m´etodos IBM-1, SEF, NEE y las pruebas empíricas existentes muestran cierta concordancia, aunque con algunas discrepancias. Los resultados de la NEE para el estado fundamental y para las bandas β y γ son más fiables con los datos empíricos que las estimaciones derivadas de los modelos IBM-1 y SEF. Las probabilidades de transición reducidas B(E2) del modelo IBM-1 corresponden correctamente a los datos experimentales. En el GSB, las energías de los estados 6+, 8+ y 10+ no se modelan con precisión en el modelo IBM-1. Los valores R4/2 de los niveles energéticos bajos de los isótopos de Os fluctúan gradualmente con el aumento del número de neutrones. El contador EPS indica que el límite de transición de los isótopos 170-180Os tiene una transición rotacional vibracional γ suave.

References

T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A 309, 1 (1978). https://www.sciencedirect.com/science/article/pii/0375947478905328 DOI: https://doi.org/10.1016/0375-9474(78)90532-8

W. Greiner and J. Reinhardt, Field Quantization (Springer Berlin, Heidelberg, 1996). https://link.springer.com/book/10.1007/978-3-642-61485-9#bibliographic-information DOI: https://doi.org/10.1007/978-3-642-61485-9

F. Pan and J. Draayer, Nucl. Phys. A 636, 156 (1998). https://www.sciencedirect.com/science/article/pii/S0375947498002073 DOI: https://doi.org/10.1016/S0375-9474(98)00207-3

A. Arima and F. Iachello, Ann. Phys. 99, 253 (1976). https://doi.org/10.1016/0003-4916(76)90097-X DOI: https://doi.org/10.1016/0003-4916(76)90097-X

F. Iachello and A. Arima, Phys. Lett. B 53, 309 (1974). https://www.sciencedirect.com/science/article/pii/037026937490389X DOI: https://doi.org/10.1016/0370-2693(74)90389-X

A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975). https://link.aps.org/doi/10.1103/PhysRevLett.35.1069 DOI: https://doi.org/10.1103/PhysRevLett.35.1069

P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010). https://link.aps.org/doi/10.1103/RevModPhys.82.2155 DOI: https://doi.org/10.1103/RevModPhys.82.2155

R. Kumar, S. K. Sharma, and J. B. Gupta, Armen. J. Phys. 3, 150 (2010). https://api.semanticscholar.org/CorpusID:55181870

A. M. Al-Nuaimi, R. Alkhayat, and M. Al-Jubbori, Karbala Int. J. Mod. Sci. 8, 391 (2022). https://kijoms.uokerbala.edu.iq/home/vol8/iss3/9/ DOI: https://doi.org/10.33640/2405-609X.3249

W. Zhang, B. Cederwall, and et al., Phys. Lett. B 820, 136527 (2021). https://www.sciencedirect.com/science/article/pii/S0370269321004676

A. Goasduff, J. Ljungvall, and et al., Phys. Rev. C 100, 034302 (2019). https://link.aps.org/doi/10.1103/PhysRevC.100.034302

P. H. Regan, C. W. Beausang, and et al., Phys. Rev. Lett. 90, 152502 (2003). https://link.aps.org/doi/10.1103/PhysRevLett.90.152502

D. Bonatsos, P. E. Georgoudis, and et al., Phys. Rev. C 88, 034316 (2013). https://link.aps.org/doi/10.1103/PhysRevC.88.034316 DOI: https://doi.org/10.1103/PhysRevC.88.034316

J. B. Gupta and S. Sharma, Indian J. Pure Appl. Phys. 26, 601 (1988).

M. A. Al-Jubbori, H. H. Kassim, and et al., Nucl. Phys. A 970, 438 (2018). https://www.sciencedirect.com/science/article/pii/S037594741830006X DOI: https://doi.org/10.1016/j.nuclphysa.2018.01.005

K. Nomura, T. Otsuka, and et al., Phys. Rev. C 84, 054316 (2011). https://link.aps.org/doi/10.1103/PhysRevC.84.054316 DOI: https://doi.org/10.1103/PhysRevC.84.014302

I. Hossain, H. H. Kassim, and et al., ScienceAsia 42, 22 (2016). https://www.scienceasia.org/content/viewabstract.php?ms=6570 DOI: https://doi.org/10.2306/scienceasia1513-1874.2016.42.022

M. Délèze, S. Drissi, and et al., Nucl. Phys. A 551, 269 (1993). https://www.sciencedirect.com/science/article/pii/037594749390482D DOI: https://doi.org/10.1016/0375-9474(93)90482-D

H. El-Gendy, Nucl. Phys. A 1006, 122117 (2021). https://www.sciencedirect.com/science/article/pii/S0375947420304462 DOI: https://doi.org/10.1016/j.nuclphysa.2020.122117

A. Mohammed-Ali, R. B. Alkhayat, and et al., Rev. Mex. Fis. 68, 060401 (2022). https://rmf.smf.mx/ojs/index.php/rmf/article/view/6039

A. E. L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett. 44, 1747 (1980). https://link.aps.org/doi/10.1103/PhysRevLett.44.1747 DOI: https://doi.org/10.1103/PhysRevLett.44.1747

R. F. Casten, The Interacting Boson Approximation Model, International School of Physics Enrico Fermi, Vol. 169 (IOS Press, 2008) p. 385. https://ebooks.iospress.nl/publication/26710

R. F. Casten and D. D. Warner, Rev. Mod. Phys. 60, 389 (1988). https://link.aps.org/doi/10.1103/RevModPhys.60.389 DOI: https://doi.org/10.1103/RevModPhys.60.389

M. A. Al-Jubbori, H. H. Kassim, and et al., Nucl. Phys. A 955, 101 (2016). https://www.sciencedirect.com/science/article/pii/S0375947416301488 DOI: https://doi.org/10.1016/j.nuclphysa.2016.06.005

M. A. Al-Jubbori, F. S. Radhi, and et al., Nucl. Phys. A 971, 35 (2018). https://www.sciencedirect.com/science/article/pii/S0375947418300125 DOI: https://doi.org/10.1016/j.nuclphysa.2018.01.011

H. H. Kassim, A. A. Mohammed-Ali, and et al., Iran. J. Sci. Technol., Trans. Sci. 42, 993 (2018). https://link.springer.com/article/10.1007/s40995-016-0104-x

S. M. Mutsher, F. I. Sharrad, and E. A. Salman, Nucl. Phys. A 1017, 122342 (2022). https://www.sciencedirect.com/science/article/pii/S0375947421002074 DOI: https://doi.org/10.1016/j.nuclphysa.2021.122342

S. Raman, C. Nestor, and P. Tikkanen, Atom. Data Nucl. Data 78, 1 (2001). https://www.sciencedirect.com/science/article/pii/S0092640X01908587 DOI: https://doi.org/10.1006/adnd.2001.0858

K. Abrahams, K. Allaart, and A. E. L. Dieperink, Nuclear Structure, Vol. 67 (Springer New York, NY, 2012). https://link.springer.com/book/10.1007/978-1-4684-3950-2

F. X. Xu, C. S. Wu, and J. Y. Zeng, Phys. Rev. C 40, 2337 (1989). https://link.aps.org/doi/10.1103/PhysRevC.40.2337 DOI: https://doi.org/10.1103/PhysRevC.40.2337

E. Browne and H. Junde, Nucl. Data Sheets 87, 15 (1999). https://www.sciencedirect.com/science/article/pii/S0090375299900157 DOI: https://doi.org/10.1006/ndsh.1999.0015

M. Basunia, Nucl. Data Sheets 107, 791 (2006). https://www.sciencedirect.com/science/article/pii/S0090375206000202 DOI: https://doi.org/10.1016/j.nds.2006.03.001

C. Baglin, E. McCutchan, and et al., Nucl. Data Sheets 153, 1 (2018). https://www.sciencedirect.com/science/article/pii/S0090375218300796 DOI: https://doi.org/10.1016/j.nds.2018.11.001

E. Achterberg, O. Capurro, and G. Marti, Nucl. Data Sheets 110, 1473 (2009). https://www.sciencedirect.com/science/article/pii/S0090375209000490 DOI: https://doi.org/10.1016/j.nds.2009.05.002

E. McCutchan, Nucl. Data Sheets 126, 151 (2015). https://www.sciencedirect.com/science/article/pii/S0090375215000137 DOI: https://doi.org/10.1016/j.nds.2015.05.002

B. Singh, Nucl. Data Sheets 96, 1 (2002). https://www.sciencedirect.com/science/article/pii/S0090375202900104 DOI: https://doi.org/10.1006/ndsh.2002.0010

How to Cite

APA

Ali, F. M., Abed Al-Jubbori, M. and Alkhayat, R. B. (2024). INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os. MOMENTO, (68), 86–102. https://doi.org/10.15446/mo.n68.109589

ACM

[1]
Ali, F.M., Abed Al-Jubbori, M. and Alkhayat, R.B. 2024. INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os. MOMENTO. 68 (Jan. 2024), 86–102. DOI:https://doi.org/10.15446/mo.n68.109589.

ACS

(1)
Ali, F. M.; Abed Al-Jubbori, M.; Alkhayat, R. B. INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os. Momento 2024, 86-102.

ABNT

ALI, F. M.; ABED AL-JUBBORI, M.; ALKHAYAT, R. B. INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os. MOMENTO, [S. l.], n. 68, p. 86–102, 2024. DOI: 10.15446/mo.n68.109589. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/109589. Acesso em: 30 jul. 2024.

Chicago

Ali, Fatima M., Mushtaq Abed Al-Jubbori, and Rabee B. Alkhayat. 2024. “INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os”. MOMENTO, no. 68 (January):86-102. https://doi.org/10.15446/mo.n68.109589.

Harvard

Ali, F. M., Abed Al-Jubbori, M. and Alkhayat, R. B. (2024) “INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os”, MOMENTO, (68), pp. 86–102. doi: 10.15446/mo.n68.109589.

IEEE

[1]
F. M. Ali, M. Abed Al-Jubbori, and R. B. Alkhayat, “INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os”, Momento, no. 68, pp. 86–102, Jan. 2024.

MLA

Ali, F. M., M. Abed Al-Jubbori, and R. B. Alkhayat. “INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os”. MOMENTO, no. 68, Jan. 2024, pp. 86-102, doi:10.15446/mo.n68.109589.

Turabian

Ali, Fatima M., Mushtaq Abed Al-Jubbori, and Rabee B. Alkhayat. “INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os”. MOMENTO, no. 68 (January 3, 2024): 86–102. Accessed July 30, 2024. https://revistas.unal.edu.co/index.php/momento/article/view/109589.

Vancouver

1.
Ali FM, Abed Al-Jubbori M, Alkhayat RB. INVESTIGATION OF THE NUCLEAR STRUCTURE OF THE ISOTOPES 170−180Os. Momento [Internet]. 2024 Jan. 3 [cited 2024 Jul. 30];(68):86-102. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/109589

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

180

Downloads

Download data is not yet available.