EMPAREJAMIENTO DOSIMÉTRICO DE HACES DE FOTONES DE 6 MeV DE ENERGÍA DE DOS ACELERADORES LINEALES DEL MISMO SISTEMA DE COLIMACIÓN
DOSIMETRIC PAIRING OF PHOTON BEAMS OF 6 MeV OF ENERGY FROM TWO LINEAR ACCELERATORS OF THE SAME COLLIMATION SYSTEM
DOI:
https://doi.org/10.15446/mo.n69.110775Keywords:
método Monte Carlo, aceleradores de partículas, dosis de radiación (es)radiation dose, Monte Carlo method, particle accelerators (en)
Downloads
En los centros de radioterapia, donde se tienen más de dos aceleradores lineales (Linacs) del mismo fabricante y modelo, es importante considerar un emparejamiento dosimétrico. Por esta razón, se presentó la iniciativa de comparar los factores dosimétricos de dos modelos de Linacs
Synergy (ELEKTA) con fotones de 6 MeV de energía. Se consideraron los factores de dispersión total, la variación de la dosis en el eje central, el perfil de dosis, los factores de transmisión en cuña y la tasa de dosis. Las mediciones absolutas y relativas se realizaron con 5 cámaras de ionización y las distribuciones de dosis planas se obtuvieron con una disposición de 729 cámaras de ionización, el índice de γ fue evaluado por el software Mephysto.
Los resultados obtenidos fueron valores de diferencia de dosis inferiores al 1 %, distribuciones de dosis reproducidas con un valor superior al 95% de los vóxeles analizados para Distance to agreement (DTA) de 2 mm y Δ DOSE de 2 %, tanto para PDP como para perfiles evaluados. Estos resultados fueron validados con datos obtenidos con simulación Monte Carlo (XVMC). Se concluyó que con la metodología desarrollada fue posible obtener un emparejamiento adecuado de haces generados por dos Linacs diferentes.
In radiotherapy centers, where there are more than two linear accelerators (Linacs) of the same manufacturer and model, it is important to consider a dosimetric pairing. For this reason, the initiative to compare the dosimetric factors of two models of Linacs Synergy (ELEKTA) with photons of 6 MeV of energy was presented. Total dispersion factors, dose variation in the central axis, dose profile, wedge transmission factors, and dose rate were considered. Absolute and relative measurements were made with 5 ionization chambers, flat dose distributions were obtained with an arrangement of 729 ionization chambers, and the γ index was evaluated by Mephysto software.
The results obtained were dose difference values of less than 1%, reproduced dose distributions with a value greater than 95% of voxels analyzed for Distance to agreement (DTA) of 2 mm and Δ DOSE of 2%, both for PDD and for evaluted profiles. These results were validated with data obtained with Monte Carlo simulation (XVMC). It was concluded that with the methodology developed it was possible to obtain an adequate pairing of beams generated by two different Linacs.
References
C. Krishnappan, C. Radha, and et al., Radiol Phys Tech 11, 423 (2018). https://pubmed.ncbi.nlm.nih.gov/30269310/
B. Sarkar, A. Manikandan, and et al., Brit J Radiol 86, 20130238 (2013). https://academic.oup.com/bjr/article-abstract/86/1031/20130238/7444616?redirectedFrom=fulltext
J. Hrbacek, T. Depuydt, and et al., Med Phys 34, 2917 (2007). https://pubmed.ncbi.nlm.nih.gov/17822000/
D. Ghemis, , L. Marcu, and et al., Radiat Oncol 18 (2023). https://ro-journal.biomedcentral.com/articles/10.1186/s13014-023-02313-5
J. Bhangle, V. Narayanan, and et al., J Med Phys 36 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159224/
C. Nelson, M. Garcia, and et al., Med Phys 43, 3575 (2016). https://aapm.onlinelibrary.wiley.com/doi/10.1118/1.4956672
C. Able, R. Zakikhani, and et al., Med Phys 43, 3576 (2016). https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4956676
S. Ashokkumar, K. Ganesh, and et al., Asian Pac J Cancer Prev 18, 3439 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980907/
J. Rijken, H. Schachenmayr, and et al., J Appl Clin Med Phys. 20, 99 (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448346/
S. Kang, J. Chung, and et al., J Korean Phys Soc 75, 628 (2019). https://link.springer.com/article/10.3938/jkps.75.628
J. Rojas and D. Venencia, J Med Phys. 46, 211 (2021). https://pubmed.ncbi.nlm.nih.gov/34703106/
S. Sistani, H. Babaeifar, and et al., Radiat Prot Dosimetry 199, 347 (2023). https://pubmed.ncbi.nlm.nih.gov/36588466/
Y. Li, W. Wu, and et al., Sci Rep 13, 10131 (2023). https://www.nature.com/articles/s41598-023-36930-7
D. Low, W. Harms, and et al., Med Phys 25, 656 (1998). https://pubmed.ncbi.nlm.nih.gov/9608475/
Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer (International Atomic Energy Agency, 2004 https://www.iaea.org/publications/6974/commissioning-and-quality-assurance-of-computerized-planning-systems-for-radiation-treatment-of-cancer
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.