Published

2024-01-02

INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS

INFLUENCIA DE LAS DIMENSIONES E INTERACCIONES MAGNÉTICAS EN LOS CAMPOS DE ANIQUILACIÓN Y NUCLEACIÓN DE NANODISCOS DE PERMALLOY USANDO SIMULACIÓN MICROMAGNÉTICA

DOI:

https://doi.org/10.15446/mo.n68.110938

Keywords:

Permalloy, nanodisk, micro magnetic simulation, magnetic votex (en)
Permaloy, nanodisco, simulación micromagnética, vórtice magnético (es)

Downloads

Authors

Permalloy can exhibit magnetic vortex configurations depending on their dimensions and geometry, being of great interest due to potential applications in data storage and for cancer treatment. This work focuses on the effects of perpendicular uniaxial anisotropy, dimensions of permalloy nanodisks, and magnetostatic interactions on the annihilation and nucleation fields of magnetic vortices by means of micromagnetic simulations. Nanodisks with different diameters were evaluated, considering the effect of anisotropy generated by a platinum substrate for isolated nanodisks of 20 nm thickness. The effect of magnetostatic interactions for different arrays of identical nanodisks and a 10 x 10 array with random diameters from a normal distribution was also evaluated. The results show that the annihilation and nucleation fields are influenced by the perpendicular uniaxial anisotropy. The higher the anisotropy, the more the annihilation field decreases, and the nucleation field increases, thus favoring the monodomain magnetic configuration. It was also shown that the magnetic interaction between the nanodisks and the lattice geometry led to a variation of the annihilation and nucleation fields. The magnetostatic interaction in the lattice leads to a collective rotation of the magnetic moments, so that the closing of the magnetic flux occurs randomly in a series of nanodisks minimizing the energy.

Permalloy puede exhibir configuraciones de vórtices magnéticos dependiendo de sus dimensiones y geometría, siendo de gran interés debido a sus potenciales aplicaciones en el almacenamiento de datos y para el tratamiento del cáncer. Este trabajo se centra en los efectos de la anisotropía uniaxial perpendicular, las dimensiones de nanodiscos de aleación permalloy y las interacciones magnetostáticas sobre los campos de aniquilación y nucleación de vórtices magnéticos mediante simulaciones micromagnéticas. Se evaluaron nanodiscos con diferentes diámetros, considerando el efecto de la anisotropía generada por un sustrato de platino para nanodiscos aislados de 20 nm de espesor. También, se evaluó el efecto de las interacciones magnetostáticas para diferentes arreglos de nanodiscos idénticos y un arreglo de 10 x 10 con diámetros aleatorios con una distribución normal. Los resultados muestran que los campos de aniquilación y nucleación están influenciados por la anisotropía uniaxial perpendicular. Cuanto mayor es la anisotropía, más disminuye el campo de aniquilación y aumenta el campo de nucleación, favoreciendo así la configuración magnética monodominio. También se demostró que la interacción magnética entre los nanodiscos y la geometría de la red provocaba una variación de los campos de aniquilación y nucleación. La interacción magnetostática en la red conduce a una rotación colectiva de los momentos magnéticos, de modo que el cierre del flujo magnético se produce de forma aleatoria en una serie de nanodiscos, minimizando la energía.

References

R. V. Jain, L. Z. Tsai, and et al., J. Magn. Magn. Mater. 563, 169901 (2022). https://doi.org/10.1016/j.jmmm.2022.169901 DOI: https://doi.org/10.1016/j.jmmm.2022.169901

Z. Zhang, J. Lim, and et al., J. Magn. Magn. Mater. 561, 169727 (2022). https://doi.org/10.1016/j.jmmm.2022.169727 DOI: https://doi.org/10.1016/j.jmmm.2022.169727

D. Kuźma, L. Laskowski, and et al., J. Magn. Magn. Mater. 545, 168685 (2022). https://doi.org/10.1016/j.jmmm.2021.168685 DOI: https://doi.org/10.1016/j.jmmm.2021.168685

A. Fernández, R. Streubel, and et al., Nat. Commun. 8, 15756 (2017). https://doi.org/10.1038/ncomms15756 DOI: https://doi.org/10.1038/ncomms15756

N. Hirano, S. Kobayashi, and et al., Appl. Phys. Lett. 119, 132401 (2021). https://doi.org/10.1063/5.0060439 DOI: https://doi.org/10.1063/5.0060439

P. Laha, B. Mahato, and et al., Appl. Phys. A 128, 394 (2022). https://doi.org/10.1007/s00339-022-05519-8 DOI: https://doi.org/10.1007/s00339-022-05519-8

F. Guo, L. Belova, and R. McMichael, Phys. Rev. Lett. 110, 017601 (2013). https://link.aps.org/doi/10.1103/PhysRevLett.110.017601 DOI: https://doi.org/10.1103/PhysRevLett.110.017601

A. Vansteenkiste, K. Chou, and et al., Nature Phys. 5, 332 (2009). https://doi.org/10.1038/nphys1231 DOI: https://doi.org/10.1038/nphys1231

W. Peng, L. Wang, and et al., J. Alloy. Compd. 910, 164903 (2022). https://doi.org/10.1016/j.jallcom.2022.164903 DOI: https://doi.org/10.1016/j.jallcom.2022.164903

S. Piramanayagam and K. Srinivasan, J. Magn. Magn. Mater.321, 485 (2009). https://doi.org/10.1016/j.jmmm.2008.05.007 DOI: https://doi.org/10.1016/j.jmmm.2008.05.007

H. Zhang, H. Yu, and et al., Curr. Appl. Phys. 43, 72 (2022). https://doi.org/10.1016/j.cap.2022.08.013 DOI: https://doi.org/10.1016/j.cap.2022.08.013

M. LoBue, F. Mazaleyrat, and et al., J. Magn. Magn. Mater. 322, 1290 (2010). https://doi.org/10.1016/j.jmmm.2009.04.081 DOI: https://doi.org/10.1016/j.jmmm.2009.04.081

M. Ferreira, J. Sousa, and et al., Mater. 13, 266 (2020). https://www.mdpi.com/1996-1944/13/2/266 DOI: https://doi.org/10.3390/ma13020266

M. Martínez-Perez and D. Zueco, ACS Photonics 6, 360 (2019). https://doi.org/10.1021/acsphotonics.8b00954 DOI: https://doi.org/10.1021/acsphotonics.8b00954

G. Nahrwold, J. Scholtyssek, and et al., J. Appl. Phys. 108, 013907 (2010). https://doi.org/10.1063/1.3431384 DOI: https://doi.org/10.1063/1.3431384

K. Guslienko, V. Novosad, and et al., Appl. Phys. Lett. 78, 3848 (2001). https://doi.org/10.1063/1.1377850 DOI: https://doi.org/10.1063/1.1377850

E. Novais, S. Allende, and et al., J. Appl. Phys. 114, 153905 (2013). https://doi.org/10.1063/1.4824803 DOI: https://doi.org/10.1063/1.4824803

E. Novais, P. Landeros, and et al., J. Appl. Phys. 110, 053917 (2011). https://doi.org/10.1063/1.3631081 DOI: https://doi.org/10.1063/1.3631081

A. Vansteenkiste, J. Leliaert, and et al., AIP Adv. 4, 107133 (2014). https://doi.org/10.1063/1.4899186 DOI: https://doi.org/10.1063/1.4899186

L. Landau and E. Lifshitz, in Perspectives in Theoretical Physics, edited by L. Pitaevski (Pergamon, 1992) pp. 51–65. https://doi.org/10.1016/B978-0-08-036364-6.50008-9 DOI: https://doi.org/10.1016/B978-0-08-036364-6.50008-9

F. Garcia, J. Sinnecker, and et al., J. Appl. Phys. 112, 113911 (2012). https://doi.org/10.1063/1.4768446 DOI: https://doi.org/10.1063/1.4768446

J. Sinnecker, H. Vigo, and et al., J. Appl. Phys. 115, 203902 (2014). https://doi.org/10.1063/1.4878875 DOI: https://doi.org/10.1063/1.4878875

A. Guimarães, Principles of Nanomagnetism, NanoScience and Technology (Springer International Publishing, 2017). https://books.google.com.co/books?id=YOIrvwEACAAJ DOI: https://doi.org/10.1007/978-3-319-59409-5_1

M. Schneider, H. Hoffmann, and et al., J. Appl. Phys. 92, 1466 (2002). https://doi.org/10.1063/1.1490623 DOI: https://doi.org/10.1063/1.1490623

V. Novosad, K. Guslienko, and et al., Phys. Rev. B 65, 060402 (2002). https://link.aps.org/doi/10.1103/PhysRevB.65.060402

How to Cite

APA

Urcia-Romero, S. R., Vigo-Cotrina, H. E. and Jáuregui-Rosas, S. R. (2024). INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS. MOMENTO, (68), 69–85. https://doi.org/10.15446/mo.n68.110938

ACM

[1]
Urcia-Romero, S.R., Vigo-Cotrina, H.E. and Jáuregui-Rosas, S.R. 2024. INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS. MOMENTO. 68 (Jan. 2024), 69–85. DOI:https://doi.org/10.15446/mo.n68.110938.

ACS

(1)
Urcia-Romero, S. R.; Vigo-Cotrina, H. E.; Jáuregui-Rosas, S. R. INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS. Momento 2024, 69-85.

ABNT

URCIA-ROMERO, S. R.; VIGO-COTRINA, H. E.; JÁUREGUI-ROSAS, S. R. INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS. MOMENTO, [S. l.], n. 68, p. 69–85, 2024. DOI: 10.15446/mo.n68.110938. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/110938. Acesso em: 30 jul. 2024.

Chicago

Urcia-Romero, Silvana R., Helmunt E. Vigo-Cotrina, and Segundo R. Jáuregui-Rosas. 2024. “INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS”. MOMENTO, no. 68 (January):69-85. https://doi.org/10.15446/mo.n68.110938.

Harvard

Urcia-Romero, S. R., Vigo-Cotrina, H. E. and Jáuregui-Rosas, S. R. (2024) “INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS”, MOMENTO, (68), pp. 69–85. doi: 10.15446/mo.n68.110938.

IEEE

[1]
S. R. Urcia-Romero, H. E. Vigo-Cotrina, and S. R. Jáuregui-Rosas, “INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS”, Momento, no. 68, pp. 69–85, Jan. 2024.

MLA

Urcia-Romero, S. R., H. E. Vigo-Cotrina, and S. R. Jáuregui-Rosas. “INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS”. MOMENTO, no. 68, Jan. 2024, pp. 69-85, doi:10.15446/mo.n68.110938.

Turabian

Urcia-Romero, Silvana R., Helmunt E. Vigo-Cotrina, and Segundo R. Jáuregui-Rosas. “INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS”. MOMENTO, no. 68 (January 3, 2024): 69–85. Accessed July 30, 2024. https://revistas.unal.edu.co/index.php/momento/article/view/110938.

Vancouver

1.
Urcia-Romero SR, Vigo-Cotrina HE, Jáuregui-Rosas SR. INFLUENCE OF DIMENSION AND MAGNETIC INTERACTIONS ON ANNIHILATION AND NUCLEATION FIELDS OF PERMALLOY NANODISKS USING MICROMAGNETIC SIMULATIONS. Momento [Internet]. 2024 Jan. 3 [cited 2024 Jul. 30];(68):69-85. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/110938

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

217

Downloads

Download data is not yet available.