Published

2024-01-02

SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS

SÍNTESIS Y CARACTERIZACIÓN DE LA NANOHETEROESTRUCTURA CdS/CuAlO2/ITO: UN NUEVO LED PARA APLICACIONES OPTOELECTRÓNICAS

DOI:

https://doi.org/10.15446/mo.n68.110999

Keywords:

delafossite, heterostructure, nanoparticles, light emitting diodes, optoelectronics, cadmium sulphide (en)
delafosita, heteroestructura, diodos emisores de luz, nanopartículas, optoelectrónica, sulfuro de cadmio (es)

Downloads

Authors

Nano-heterostructures (NHs) are drawing attention due to their fascinating properties as materials for constructing nano-electronic devices. CdS and CuAlO2 were prepared using the co-precipitation method and deposited, respectively, on Indium Tin Oxide (ITO) substrate to study their characteristics and effectiveness for light-emitting diode (LED) applications and photodetectors. Investigations were made on the morphological, optical, and electrical characteristics. According to the X-ray diffraction pattern, CdS nanoparticles have a cubic phase structure and diffraction peaks at 26.3, 43.8, and 51.8. UV-visible optical studies were used to characterize the absorbance of CdS, CuAlO2, and CdS/CuAlO2/ITO with redshift around 400 nm for the nanoparticles. Using the Tauc plot, the band gap energy of the prepared heterostructure showed a value of 3.1
eV. The Scanning Electron Microscopy (FESEM) images show homogeneous morphology with little agglomeration. I-V characterization reveals good properties with high forward current power. CdS/CuAlO2/ITO shows high responsivity of 0.45 A/W, which indicates a straightforward, low-cost, and effective fabrication technique for the fabrication of light-emitting diodes and a promising heterostructure for manufacturing photo detectors.

Las nano heteroestructuras (NH) están llamando la atención debido a sus fascinantes propiedades como materiales para la construcción de dispositivos nanoelectrónicos. El CdS y el CuAlO2 se prepararon mediante el método de coprecipitación y se depositaron, respectivamente, sobre sustrato de óxido de indio y estaño (ITO) para estudiar sus características y efectividad en aplicaciones de diodos emisores de luz (LED) y fotodetectores. Se investigaron las características morfológicas, ópticas y eléctricas. De acuerdo con el patrón de difracción de rayos X, las nanopartículas de CdS tienen una estructura de fase cúbica y picos de difracción a 26.3, 43.8, y 51.8. Se utilizaron estudios ópticos UV-visibles para caracterizar la absorbancia de CdS, CuAlO2, y CdS/CuAlO2/ITO con un desplazamiento al rojo de alrededor de 400 nm para las nanopartículas. Utilizando la gráfica de Tauc, la energía de banda prohibida de la heteroestructura preparada mostró un valor de 3.1 eV. Las imágenes de Microscopía Electrónica de Barrido (FESEM) muestran una morfología homogénea con poca aglomeración. La caracterización I-V revela buenas propiedades con una alta potencia de corriente directa. El CdS/CuAlO2/ITO muestra una alta respuesta de 0.45 A/W, lo que supone una técnica de fabricación sencilla, económica y eficaz para la fabricación de diodos emisores de luz y una heteroestructura prometedora para la fabricación de fotodetectores.

References

K. Saumya, S. Naskar, and T. Mukhopadhyay, Nano Futures 7, 032005 (2023). https://doi.org/10.1088/2399-1984/acf0a9 DOI: https://doi.org/10.1088/2399-1984/acf0a9

Q. Qian, Z. Wan, and X. Duan, National Science Open 2 (2023). https://nso-journal.org/articles/nso/pdf/2023/01/NSO20220040.pdf DOI: https://doi.org/10.1360/nso/20220034

H. Inaya and M. Mahdi, Iraqi J. Phys. 21, 92 (2023). https://doi.org/10.30723/ijp.v21i3.1126 DOI: https://doi.org/10.30723/ijp.v21i3.1126

M. Almamari, N. Ahmed, and et al., Heliyon 8, e09959 (2022). https://doi.org/10.1016/j.heliyon.2022.e09959 DOI: https://doi.org/10.1016/j.heliyon.2022.e09959

N. Hullavarad and S. Hullavarad, Photonic. Nanostruct. 5, 156 (2007). https://doi.org/https://doi.org/10.1016/j.photonics.2007.03.001

I. Ismail, K. Khashan, and A. Alwaan, Silicon 9, 321 (2017). https://doi.org/https://doi.org/10.1007/s12633-016-9446-4 DOI: https://doi.org/10.1007/s12633-016-9446-4

I. Hadi, K. Khashan, and D. Sulaiman, Mater. Today-Proc. 42, 3054 (2021). https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.828 DOI: https://doi.org/10.1016/j.matpr.2020.12.828

C. Martínez, C. Rodríguez, and et al., Int. J. Photoenergy 2014, 453747 (2014). https://doi.org/https://doi.org/10.1155/2014/453747 DOI: https://doi.org/10.1155/2014/453747

A. Samadi and M. Sadeghi, Spectrochim. Acta A 152, 156 (2016). https://doi.org/https://doi.org/10.1016/j.saa.2015.07.052 DOI: https://doi.org/10.1016/j.saa.2015.07.052

S. Talwatkar, Y. Tamgadge, and et al., Solid State Sci. 38, 42 (2014). https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2014.09.014 DOI: https://doi.org/10.1016/j.solidstatesciences.2014.09.014

M. Abd, H. Wasly, and K. Batoo, Appl. Phys. A 125, 283 (2019). https://doi.org/https://doi.org/10.1007/s00339-019-2576-y DOI: https://doi.org/10.1007/s00339-019-2576-y

M. Shariati, A. Samadi, and A. Colagar, J. Hazard. Mater. 366, 475 (2019). https://doi.org/https://doi.org/10.1016/j.jhazmat.2018.12.025 DOI: https://doi.org/10.1016/j.jhazmat.2018.12.025

T. Park, K. Lee, and S. Lee, Appl. Microbiol. Biotechnol. 100, 521 (2016). https://doi.org/10.1007/s00253-015-6904-7 DOI: https://doi.org/10.1007/s00253-015-6904-7

N. Hullavarad and S. Hullavarad, Photonic. Nanostruct. 5, 156 (2007). https://doi.org/10.1016/j.photonics.2007.03.001 DOI: https://doi.org/10.1016/j.photonics.2007.03.001

H. Kawazoe, M. Yasukawa, and et al., Nature 389, 939 (1997). https://doi.org/10.1038/40087

L. Cattin, B. Reguig, and et al., App. Surf. Sci. 254, 5814 (2008). https://doi.org/10.1016/j.apsusc.2008.03.071 DOI: https://doi.org/10.1016/j.apsusc.2008.03.071

O. Rabinovich, S. Legotin, and et al., Jpn. J. Appl. Phys. 55, 05FJ13 (2016). https://doi.org/10.7567/JJAP.55.05FJ13 DOI: https://doi.org/10.7567/JJAP.55.05FJ13

T. Ehara and T. Nakanishi, MATEC Web Conf. 67, 04012 (2016). https://doi.org/10.1051/matecconf/20166704012 DOI: https://doi.org/10.1051/matecconf/20166704012

Z. Abdul, Adv. Nat. Appl. Sci. 10, 72 (2016). https://www.researchgate.net/profile/Zehraa-Najim/publication/331233792_ADVANCES_in_NATURAL_and_APPLIED_SCIENCES_Open_Access_Journal_Effect_of_Concentration_on_Characterization_of_MgO_Nanoparticles_using_Chemical_Bath_Method/links/5c6da1d2299bf1e3a5b8bfa0/ADVANCES-in-NATURAL-and-APPLIED-SCIENCES-Open-Access-Journal-Effect-of-Concentration-on-Characterization-of-MgO-Nanoparticles-using-Chemical-Bath-Method.pdf

Z. Abdul, J. Compos. Adv. Mater. (RCAM) 31, 167 (2021). https://doi.org/10.18280/rcma.310308 DOI: https://doi.org/10.18280/rcma.310308

C. Bouzidi, H. Bouzouita, and et al., Mat. Sci. Eng. B 118, 259 (2005). https://doi.org/10.1016/j.mseb.2004.12.039 DOI: https://doi.org/10.1016/j.mseb.2004.12.039

M. Maleki, S. M., and et al., Semicond. Phys. Quantum Electron. Optoelectron. 10, 30 (2007). https://doi.org/10.15407/spqeo10.01.030 DOI: https://doi.org/10.15407/spqeo10.01.030

J. Pellicer, A. Segura, and et al., Appl. Phys. Lett. 88, 181904 (2006). https://doi.org/10.1063/1.2200398 DOI: https://doi.org/10.1063/1.2200398

H. Kawazoe, M. Yasukawa, and et al., Nature 389, 939 (1997). https://doi.org/10.1038/40087 DOI: https://doi.org/10.1038/40087

How to Cite

APA

Abdul-Ameer, Z. N. (2024). SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS. MOMENTO, (68), 27–39. https://doi.org/10.15446/mo.n68.110999

ACM

[1]
Abdul-Ameer, Z.N. 2024. SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS. MOMENTO. 68 (Jan. 2024), 27–39. DOI:https://doi.org/10.15446/mo.n68.110999.

ACS

(1)
Abdul-Ameer, Z. N. SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS. Momento 2024, 27-39.

ABNT

ABDUL-AMEER, Z. N. SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS. MOMENTO, [S. l.], n. 68, p. 27–39, 2024. DOI: 10.15446/mo.n68.110999. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/110999. Acesso em: 30 jul. 2024.

Chicago

Abdul-Ameer, Zehraa N. 2024. “SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS”. MOMENTO, no. 68 (January):27-39. https://doi.org/10.15446/mo.n68.110999.

Harvard

Abdul-Ameer, Z. N. (2024) “SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS”, MOMENTO, (68), pp. 27–39. doi: 10.15446/mo.n68.110999.

IEEE

[1]
Z. N. Abdul-Ameer, “SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS”, Momento, no. 68, pp. 27–39, Jan. 2024.

MLA

Abdul-Ameer, Z. N. “SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS”. MOMENTO, no. 68, Jan. 2024, pp. 27-39, doi:10.15446/mo.n68.110999.

Turabian

Abdul-Ameer, Zehraa N. “SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS”. MOMENTO, no. 68 (January 3, 2024): 27–39. Accessed July 30, 2024. https://revistas.unal.edu.co/index.php/momento/article/view/110999.

Vancouver

1.
Abdul-Ameer ZN. SYNTHESIS AND CHARACTERIZATION OF CdS/CuAlO2/ITO NANO HETEREOSTRUCTURE NOVEL LED FOR OPTOELECTRONIC APPLICATIONS. Momento [Internet]. 2024 Jan. 3 [cited 2024 Jul. 30];(68):27-39. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/110999

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

196

Downloads

Download data is not yet available.