Published

2025-01-30

CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS

HIGGS CARGADOS DEL MODELO 3-3-1 MEDIANTE LA COLISIÓN e- e+

DOI:

https://doi.org/10.15446/mo.n70.112460

Keywords:

charged Higgs, ILC, CLIC, CLIC, 3-3-1 model, branching ratio (en)
ILC, CLIC, tasa de decaimiento, Higgs cargados, modelo 3-3-1 (es)

Downloads

Authors

  • Jorge E. Cieza Montalvo Universidade do Estado do Rio de Janeiro
  • Katherine I. Cuba Universidad Nacional de Trujillo
  • Ricardo J. Gil Universidad Nacional de Trujillo
  • Carlos A. Morgan Universidad Nacional de Trujillo
  • José F. Rabanal Universidad Nacional de Trujillo
  • Guillermo H. Ramírez Universidad Nacional de Trujillo
  • Antonio I. Rivasplata Universidad Nacional de Trujillo

In this work, we present an analysis of the production and signature of charged Higgs bosons H2± in the version of the 3-3-1 model containing heavy leptons at the CLIC (CERN Linear Collider). The production rate is found to be significant for the direct production of e- e+ → H+2 H+2

En este trabajo, presentamos un análisis de la producción y señales de los bosones de Higgs H2± cargados en la versión del modelo 3-3-1 con leptones pesados en el CLIC (CERN Linear Collider). Se ha encontrado que la tasa de producción es significativa para la producción directa de e- e+ → H+2 H+2

References

S. Glashow, Nucl. Phys. 22, 579 (1961). https://linkinghub.elsevier.com/retrieve/pii/0029558261904692

A. Salam, in Elementary Particle Theory, edited by N. Svartholm (1968).

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264

A. Crivellin and et al., Phys. Rev. D 108, 115031 (2023). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.115031https://link.aps.org/doi/10.1103/PhysRevD.108.115031

ATLAS Collaboration, Phys. Rep. (2024). https://arxiv.org/abs/2404.05498

J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974). https://www.sciencedirect.com/science/article/abs/pii/0550321374903551?via%3Dihub

J. Wess and B. Zumino, Phys. Lett. B 49, 52 (1974). https://linkinghub.elsevier.com/retrieve/pii/0370269374905784

J. Iliopoulos and B. Zumino, Nucl. Phys. B 76, 310 (1974). https://www.sciencedirect.com/science/article/abs/pii/0550321374903885?via%3Dihub

S. Ferrara, J. Iliopoulos, and B. Zumino, Nucl. Phys. B 77, 413 (1974). https://www.sciencedirect.com/science/article/abs/pii/0550321374903721?via%3Dihub

E. Witten, Nucl. Phys. B 188, 513 (1981). https://linkinghub.elsevier.com/retrieve/pii/0550321381900067

S. Dimopoulos and H. Georgi, Nucl Phys B 193, 150 (1981). https://www.sciencedirect.com/science/article/abs/pii/0550321381905228?via%3Dihub

S. Dimopoulos and et al., Phys. Rev. D 24, 1681 (1981). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.24.1681

L. Ibañez and G. G. Ross, Phys. Lett. B 105, 439 (1981). https://www.sciencedirect.com/science/article/abs/pii/0370269381912004?via%3Dihub

V. Pleitez and M. D. Tonasse, Phys. Rev. D 48, 2353 (1993). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.48.2353

F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.46.410

P. H. Frampton, Phys. Rev. Lett. 69, 2889 (1992). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.69.2889

A. G. Dias, Phys. Rev. D 71, 015009 (2005). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.71.015009

S. Glashow, Nucl. Phys. 22, 579 (1961). https://www.sciencedirect.com/science/article/abs/pii/0029558261904692?via%3Dihub

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264

A. Salam, Elementary Particle Theory, 680519, 367 (1968). https://inspirehep.net/literature/53083

H. Nilles, Phys. Rep. 110, 1 (1984). https://linkinghub.elsevier.com/retrieve/pii/0370157384900085

H. Haber and G. Kane, Phys. Rep. 117, 75 (1985). https://linkinghub.elsevier.com/retrieve/pii/0370157385900511

R. Barbieri, Riv Nuovo Cim 11, 1 (1988). https://link.springer.com/article/10.1007/BF02725953

M. D. Tonasse, Phys. Lett. B 381, 191 (1996). https://www.sciencedirect.com/science/article/abs/pii/0370269396004819?via%3Dihub

V. Pleitez and M. D. Tonasse, Phys. Rev. D 48, 2353 (1993). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.48.2353

N. T. Anh and et al., Int. J. Mod. Phys. A 16, 541 (2000). https://arxiv.org/abs/hep-ph/0011201

CERN, The Clic Potential For New Physics, Tech. Rep. (2018). https://e-publishing.cern.ch/index.php/CYRM/issue/view/71/pdf_1

E. Sicking and R. Ström, Nat. Phys. 16, 386 (2020). https://www.nature.com/articles/s41567-020-0834-8#citeas

C. Morgan and et al., Revista Mexicana de Física 68, 060802 1 (2022). https://rmf.smf.mx/ojs/index.php/rmf/article/view/6434

K. J. Ramos and et al., Momento 64, 16 (2022). https://revistas.unal.edu.co/index.php/momento/article/view/97711

J. E. Cieza Montalvo and et al., Phys. Rev. D 71, 095015 (2005). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.71.095015

J. E. Cieza Montalvo and M. D. Tonasse, Phys. Rev. D 67, 075022 (2003). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.67.075022

J. E. Cieza Montalvo and M. D. Tonasse, Nucl. Phys. B 623, 325 (2002). https://linkinghub.elsevier.com/retrieve/pii/S0550321301006435

J. E. Cieza Montalvo and et al., Phys. Rev. D 76, 117703 (2007). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.76.117703

J. E. Cieza Montalvo and et al., Phys. Rev. D 88, 095020 (2013). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.095020

M. Aaboud, G. Aad, and et al., Eur. Phys. J. C 76, 585 (2016). https://link.springer.com/article/10.1140/epjc/s10052-016-4400-6

D. Hayden, R. Brock, and C. Willis, “Z prime: A story,”(2013), arXiv:1308.5874 [hep-ex] . https://arxiv.org/abs/1308.5874

ATLAS Collaboration, Report number ATL-PHYS-PUB-2018-044 (2018). https://cds.cern.ch/record/2650549/files/ATL-PHYS-PUB-2018-044.pdf

M. Aaboud, G. Aad, and et al., Journal of High Energy Physics 2018 (2018). https://arxiv.org/abs/1709.07242

F. del Aguila and J. A. Aguilar-Saavedra, Nucl. Phys. B 813, 22 (2009). https://linkinghub.elsevier.com/retrieve/pii/S0550321308007360

A. G. Akeroyd and et al., J. High Energy Phys. 2010, 5 (2010). https://link.springer.com/article/10.1007/JHEP11(2010)005

A. Pukhov and et al., “Comphep - a package for evaluation of feynman diagrams and integration over multi-particle phase space. user’s manual for version 33,” (2000), arXiv:hep-ph/9908288 [hep-ph]. https://arxiv.org/abs/hep-ph/9908288

C. P. W. Group, E. Accomando, A. Aranda, and et al., “Physics at the clic multi-tev linear collider,” (2004), arXiv:hep-ph/0412251 [hep-ph]. https://arxiv.org/abs/hep-ph/0412251

J.-P. Delahaye, R. Bossart, and et al., Acta Physica Polonica B 30, 2029 (1999). https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=30&page=2029

How to Cite

APA

Cieza Montalvo, J. E., Cuba, K. I., Gil, R. J., Morgan, C. A., Rabanal, J. F., Ramírez, G. H. and Rivasplata, A. I. (2025). CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS. MOMENTO, (70), 101–116. https://doi.org/10.15446/mo.n70.112460

ACM

[1]
Cieza Montalvo, J.E., Cuba, K.I., Gil, R.J., Morgan, C.A., Rabanal, J.F., Ramírez, G.H. and Rivasplata, A.I. 2025. CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS. MOMENTO. 70 (Jan. 2025), 101–116. DOI:https://doi.org/10.15446/mo.n70.112460.

ACS

(1)
Cieza Montalvo, J. E.; Cuba, K. I.; Gil, R. J.; Morgan, C. A.; Rabanal, J. F.; Ramírez, G. H.; Rivasplata, A. I. CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS. Momento 2025, 101-116.

ABNT

CIEZA MONTALVO, J. E.; CUBA, K. I.; GIL, R. J.; MORGAN, C. A.; RABANAL, J. F.; RAMÍREZ, G. H.; RIVASPLATA, A. I. CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS. MOMENTO, [S. l.], n. 70, p. 101–116, 2025. DOI: 10.15446/mo.n70.112460. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/112460. Acesso em: 8 mar. 2025.

Chicago

Cieza Montalvo, Jorge E., Katherine I. Cuba, Ricardo J. Gil, Carlos A. Morgan, José F. Rabanal, Guillermo H. Ramírez, and Antonio I. Rivasplata. 2025. “CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS”. MOMENTO, no. 70 (January):101-16. https://doi.org/10.15446/mo.n70.112460.

Harvard

Cieza Montalvo, J. E., Cuba, K. I., Gil, R. J., Morgan, C. A., Rabanal, J. F., Ramírez, G. H. and Rivasplata, A. I. (2025) “CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS”, MOMENTO, (70), pp. 101–116. doi: 10.15446/mo.n70.112460.

IEEE

[1]
J. E. Cieza Montalvo, “CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS”, Momento, no. 70, pp. 101–116, Jan. 2025.

MLA

Cieza Montalvo, J. E., K. I. Cuba, R. J. Gil, C. A. Morgan, J. F. Rabanal, G. H. Ramírez, and A. I. Rivasplata. “CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS”. MOMENTO, no. 70, Jan. 2025, pp. 101-16, doi:10.15446/mo.n70.112460.

Turabian

Cieza Montalvo, Jorge E., Katherine I. Cuba, Ricardo J. Gil, Carlos A. Morgan, José F. Rabanal, Guillermo H. Ramírez, and Antonio I. Rivasplata. “CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS”. MOMENTO, no. 70 (January 30, 2025): 101–116. Accessed March 8, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/112460.

Vancouver

1.
Cieza Montalvo JE, Cuba KI, Gil RJ, Morgan CA, Rabanal JF, Ramírez GH, Rivasplata AI. CHARGED HIGGS IN 3-3-1 MODEL THROUGH e- e+ COLLISIONS. Momento [Internet]. 2025 Jan. 30 [cited 2025 Mar. 8];(70):101-16. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/112460

Download Citation