Published

2024-07-30

USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS

USO DE TECNOLOGÍAS DE IMPRESIÓN 3D EN RADIOTERAPIA EXTERNA PARA LA FABRICACIÓN DE BOLUS PERSONALIZADOS

DOI:

https://doi.org/10.15446/mo.n69.112586

Keywords:

bolus, 3D printing, compensator tissues, CTV, radiation therapy (en)
bolus, impresión 3D, radioterapia, tejijdo compensador, CTV (es)

Downloads

Authors

  • Camilo E. Pérez Cualtán Pontificia Universidad Javeriana
  • Andrea Abril Pontificia Universidad Javeriana image/svg+xml
  • Daniel R. Suarez Venegas Pontificia Universidad Javeriana

Radiotherapy has challenges for irregular tumors that extend to the skin surface; thus, boluses that act as tissue compensators are used in practice. However, conventional boluses are not adapted to the patient's anatomy or lack a dosimetry characterization, decreasing their effectiveness and precision. Given this situation, this study aimed to develop a method of characterization, design, and manufacturing boluses using 3D printing to improve dose coverage in the target volume in patients with head and neck cancer in photon beams. For this, a dosimetry characterization of the 3D printing material was performed through Hounsfield Units, and a novel experimental setup was proposed to determine the depth dose profiles depending on the 3D printing parameter: infill. Subsequently, a workflow was developed to fabricate bolus through the radiotherapy plan files, and finally, the effect of a printed bolus was evaluated with an anthropomorphic phantom. The results showed that the selected 3D printing material has similar characteristics to water (1.01 ± 0.04 g/cm³ and -115.39 ± 20 HU), making it suitable for clinical use and achieving a maximum dose of 7.8 mm with a 6 MeV beam. The ability of the workflow to generate and manufacture customized boluses adaptable to the patient's anatomy was also validated with an anthropomorphic head phantom manufactured in-house; the 95 % isodose curve in the simulation was on the target volume. It can be concluded that 3D printing technologies can design and manufacture structures comparable to commercial boluses, thus eliminating the discrepancy between the planned treatment and its execution in therapy.

La radioterapia presenta desafíos para los tumores irregulares que se extienden hasta la superficie de la piel; por ello, en la práctica se utilizan bolus que actúan como tejidos compensadores. Sin embargo, los bolus convencionales no se adaptan a la anatomía del paciente o carecen de caracterización dosimétrica, disminuyendo su eficacia y precisión. Ante esta situación, este estudio tiene como objetivo desarrollar un método de caracterización, diseño y fabricación de bolus mediante impresión 3D para mejorar la cobertura de dosis en el volumen objetivo en pacientes con cáncer de cabeza y cuello en haces de fotones. Para ello, se realizó una caracterización dosimétrica del material de impresión 3D mediante Unidades Hounsfield y se propuso una novedosa configuración experimental para determinar los perfiles de dosis en profundidad en función del parámetro de impresión 3D: el infill. Posteriormente, se desarrolló un flujo de trabajo para fabricar bolus a través de los archivos del plan de radioterapia, finalmente, se evaluó el efecto de un bolus impreso con un simulador físico antropomórfico. Los resultados mostraron que el material de impresión 3D seleccionado tiene características similares al agua (1.01 ± 0.04 g/cm³ and -115.39 ± 20 HU), lo que lo hace apto para uso clínico y logra una dosis máxima de 7,8 mm con un haz de 6 MeV. La capacidad del flujo de trabajo para generar y fabricar bolus personalizados adaptables a la anatomía del paciente también se validó con un simulador físico de cabeza antropomórfico fabricado internamente; la curva de isodosis del 95% en la simulación estaba en el volumen objetivo. Se puede concluir que las tecnologías de impresión 3D pueden ser útiles para diseñar y fabricar estructuras comparables a los bolus comerciales, eliminando así la discrepancia entre el tratamiento planificado y su ejecución en terapia.

References

V. Vyas et al., Medical Dosimetry 38, 268–273 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0958394713000162

T. Aoyama et al., Med Phys 47, 6103–6112 (2020). https://pubmed.ncbi.nlm.nih.gov/33012062/

X. Liu et al., Oncol Res Treat 43, 140–145 (2020). https://pubmed.ncbi.nlm.nih.gov/32018254/

M. Alssabbagh et al., International Journal of Advanced andApplied Sciences 4, 168–173 (2017). https://www.science-gate.com/IJAAS/V4I9/Alssabbagh.html

T. Kawamoto, N. Shikama, C. Kurokawa, N. Hara, M. Oshima, and K. Sasai, BMC Cancer 21 (2021). https://bmccancer.biomedcentral.com/articles/10.1186/s12885-021-07851-3

C. Malone, E. Gill, and et al., J. Appl. Clin. Med. Phys. 23, e13490 (2022). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906215/

A. Kassaeea, P. Blocha, and et al., Med. Dosim. 25, 127 (2000). https://www.sciencedirect.com/science/article/pii/S0958394700000388

S. Y. Park, C. H. Choi, and et al., PLoS One 11, e0168063 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145239/

R. A. Canters and et al., Radiother. Oncol. 121, 148 (2016). https://pubmed.ncbi.nlm.nih.gov/27475278/

Y. Zhao and et al., Med. Dosim. 42, 150 (2017). https://pubmed.ncbi.nlm.nih.gov/28495033/

G. Dipasquale, A. Poirier, and et al., Radiat. Oncol. 13, 203 (2018). https://pubmed.ncbi.nlm.nih.gov/30340612/

J. Diaz-Merchan, C. Español-Castro, and et al., Appl. Radiat. Isot. 199, 110908 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0969804323002610

R. Ricotti and et al., Phys. Med. 39, 25 (2017). https://pubmed.ncbi.nlm.nih.gov/28711185/

S. J. Thomas, Br. J. Radiol. 72, 781 (1999). https://pubmed.ncbi.nlm.nih.gov/10624344/

J. L. Robar and et al., Pract. Radiat. Oncol. 8, 221 (2018). https://pubmed.ncbi.nlm.nih.gov/29452866/

Q. Ma, M. Rejab, and et al., Proc. Inst. Mech. Eng. C J.Mech. Eng. Sci. 235, 4254 (2020). https://journals.sagepub.com/doi/10.1177/0954406220971667

K. Dibs, E. Gogineni, and et al., Cancers 16, 688 (2024). https://www.mdpi.com/2072-6694/16/4/688

S. Michiels and et al., Radiother. Oncol. 128, 161 (2018). https://pubmed.ncbi.nlm.nih.gov/28951008/

B. A. Dyer, D. Campos, and et al., Phys. Med. 77, 138 (2020). https://pubmed.ncbi.nlm.nih.gov/32829102/

G. C. Baltz and et al., J. Appl. Clin. Med. Phys. 20, 89 (2019). https://pubmed.ncbi.nlm.nih.gov/30821903/

A. Karl, The Production of Custom Bolus using 3D printers for applications in Radiation Therapy. Master Thesis (University of Canterbury, 2016). https://ir.canterbury.ac.nz/items/df2e3de1-6799-43b0-a4e1-20da65fadd05

K. Bahhous, M. Zerfaoui, and et al., Journal of Radiotherapy in Practice 20, 210 (2020). https://www.semanticscholar.org/paper/Enhancing-benefits-of-bolus-use-through-minimising-Bahhous-Zerfaoui/4a0d101ae21326192ddc6119d272144d4e42d171

How to Cite

APA

Pérez Cualtán, C. E., Abril, A. and Suarez Venegas, D. R. (2024). USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS. MOMENTO, (69), 80–100. https://doi.org/10.15446/mo.n69.112586

ACM

[1]
Pérez Cualtán, C.E., Abril, A. and Suarez Venegas, D.R. 2024. USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS. MOMENTO. 69 (Jul. 2024), 80–100. DOI:https://doi.org/10.15446/mo.n69.112586.

ACS

(1)
Pérez Cualtán, C. E.; Abril, A.; Suarez Venegas, D. R. USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS. Momento 2024, 80-100.

ABNT

PÉREZ CUALTÁN, C. E.; ABRIL, A.; SUAREZ VENEGAS, D. R. USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS. MOMENTO, [S. l.], n. 69, p. 80–100, 2024. DOI: 10.15446/mo.n69.112586. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/112586. Acesso em: 23 mar. 2025.

Chicago

Pérez Cualtán, Camilo E., Andrea Abril, and Daniel R. Suarez Venegas. 2024. “USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS”. MOMENTO, no. 69 (July):80-100. https://doi.org/10.15446/mo.n69.112586.

Harvard

Pérez Cualtán, C. E., Abril, A. and Suarez Venegas, D. R. (2024) “USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS”, MOMENTO, (69), pp. 80–100. doi: 10.15446/mo.n69.112586.

IEEE

[1]
C. E. Pérez Cualtán, A. Abril, and D. R. Suarez Venegas, “USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS”, Momento, no. 69, pp. 80–100, Jul. 2024.

MLA

Pérez Cualtán, C. E., A. Abril, and D. R. Suarez Venegas. “USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS”. MOMENTO, no. 69, July 2024, pp. 80-100, doi:10.15446/mo.n69.112586.

Turabian

Pérez Cualtán, Camilo E., Andrea Abril, and Daniel R. Suarez Venegas. “USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS”. MOMENTO, no. 69 (July 30, 2024): 80–100. Accessed March 23, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/112586.

Vancouver

1.
Pérez Cualtán CE, Abril A, Suarez Venegas DR. USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS. Momento [Internet]. 2024 Jul. 30 [cited 2025 Mar. 23];(69):80-100. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/112586

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

261

Downloads

Download data is not yet available.