USE OF 3D PRINTING TECHNOLOGIES IN EXTERNAL RADIOTHERAPY FOR THE FABRICATION OF CUSTOMIZED BOLUS
USO DE TECNOLOGÍAS DE IMPRESIÓN 3D EN RADIOTERAPIA EXTERNA PARA LA FABRICACIÓN DE BOLUS PERSONALIZADOS
DOI:
https://doi.org/10.15446/mo.n69.112586Keywords:
bolus, 3D printing, compensator tissues, CTV, radiation therapy (en)bolus, impresión 3D, radioterapia, tejijdo compensador, CTV (es)
Downloads
Radiotherapy has challenges for irregular tumors that extend to the skin surface; thus, boluses that act as tissue compensators are used in practice. However, conventional boluses are not adapted to the patient's anatomy or lack a dosimetry characterization, decreasing their effectiveness and precision. Given this situation, this study aimed to develop a method of characterization, design, and manufacturing boluses using 3D printing to improve dose coverage in the target volume in patients with head and neck cancer in photon beams. For this, a dosimetry characterization of the 3D printing material was performed through Hounsfield Units, and a novel experimental setup was proposed to determine the depth dose profiles depending on the 3D printing parameter: infill. Subsequently, a workflow was developed to fabricate bolus through the radiotherapy plan files, and finally, the effect of a printed bolus was evaluated with an anthropomorphic phantom. The results showed that the selected 3D printing material has similar characteristics to water (1.01 ± 0.04 g/cm³ and -115.39 ± 20 HU), making it suitable for clinical use and achieving a maximum dose of 7.8 mm with a 6 MeV beam. The ability of the workflow to generate and manufacture customized boluses adaptable to the patient's anatomy was also validated with an anthropomorphic head phantom manufactured in-house; the 95 % isodose curve in the simulation was on the target volume. It can be concluded that 3D printing technologies can design and manufacture structures comparable to commercial boluses, thus eliminating the discrepancy between the planned treatment and its execution in therapy.
La radioterapia presenta desafíos para los tumores irregulares que se extienden hasta la superficie de la piel; por ello, en la práctica se utilizan bolus que actúan como tejidos compensadores. Sin embargo, los bolus convencionales no se adaptan a la anatomía del paciente o carecen de caracterización dosimétrica, disminuyendo su eficacia y precisión. Ante esta situación, este estudio tiene como objetivo desarrollar un método de caracterización, diseño y fabricación de bolus mediante impresión 3D para mejorar la cobertura de dosis en el volumen objetivo en pacientes con cáncer de cabeza y cuello en haces de fotones. Para ello, se realizó una caracterización dosimétrica del material de impresión 3D mediante Unidades Hounsfield y se propuso una novedosa configuración experimental para determinar los perfiles de dosis en profundidad en función del parámetro de impresión 3D: el infill. Posteriormente, se desarrolló un flujo de trabajo para fabricar bolus a través de los archivos del plan de radioterapia, finalmente, se evaluó el efecto de un bolus impreso con un simulador físico antropomórfico. Los resultados mostraron que el material de impresión 3D seleccionado tiene características similares al agua (1.01 ± 0.04 g/cm³ and -115.39 ± 20 HU), lo que lo hace apto para uso clínico y logra una dosis máxima de 7,8 mm con un haz de 6 MeV. La capacidad del flujo de trabajo para generar y fabricar bolus personalizados adaptables a la anatomía del paciente también se validó con un simulador físico de cabeza antropomórfico fabricado internamente; la curva de isodosis del 95% en la simulación estaba en el volumen objetivo. Se puede concluir que las tecnologías de impresión 3D pueden ser útiles para diseñar y fabricar estructuras comparables a los bolus comerciales, eliminando así la discrepancia entre el tratamiento planificado y su ejecución en terapia.
References
V. Vyas et al., Medical Dosimetry 38, 268–273 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0958394713000162
T. Aoyama et al., Med Phys 47, 6103–6112 (2020). https://pubmed.ncbi.nlm.nih.gov/33012062/
X. Liu et al., Oncol Res Treat 43, 140–145 (2020). https://pubmed.ncbi.nlm.nih.gov/32018254/
M. Alssabbagh et al., International Journal of Advanced andApplied Sciences 4, 168–173 (2017). https://www.science-gate.com/IJAAS/V4I9/Alssabbagh.html
T. Kawamoto, N. Shikama, C. Kurokawa, N. Hara, M. Oshima, and K. Sasai, BMC Cancer 21 (2021). https://bmccancer.biomedcentral.com/articles/10.1186/s12885-021-07851-3
C. Malone, E. Gill, and et al., J. Appl. Clin. Med. Phys. 23, e13490 (2022). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906215/
A. Kassaeea, P. Blocha, and et al., Med. Dosim. 25, 127 (2000). https://www.sciencedirect.com/science/article/pii/S0958394700000388
S. Y. Park, C. H. Choi, and et al., PLoS One 11, e0168063 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145239/
R. A. Canters and et al., Radiother. Oncol. 121, 148 (2016). https://pubmed.ncbi.nlm.nih.gov/27475278/
Y. Zhao and et al., Med. Dosim. 42, 150 (2017). https://pubmed.ncbi.nlm.nih.gov/28495033/
G. Dipasquale, A. Poirier, and et al., Radiat. Oncol. 13, 203 (2018). https://pubmed.ncbi.nlm.nih.gov/30340612/
J. Diaz-Merchan, C. Español-Castro, and et al., Appl. Radiat. Isot. 199, 110908 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0969804323002610
R. Ricotti and et al., Phys. Med. 39, 25 (2017). https://pubmed.ncbi.nlm.nih.gov/28711185/
S. J. Thomas, Br. J. Radiol. 72, 781 (1999). https://pubmed.ncbi.nlm.nih.gov/10624344/
J. L. Robar and et al., Pract. Radiat. Oncol. 8, 221 (2018). https://pubmed.ncbi.nlm.nih.gov/29452866/
Q. Ma, M. Rejab, and et al., Proc. Inst. Mech. Eng. C J.Mech. Eng. Sci. 235, 4254 (2020). https://journals.sagepub.com/doi/10.1177/0954406220971667
K. Dibs, E. Gogineni, and et al., Cancers 16, 688 (2024). https://www.mdpi.com/2072-6694/16/4/688
S. Michiels and et al., Radiother. Oncol. 128, 161 (2018). https://pubmed.ncbi.nlm.nih.gov/28951008/
B. A. Dyer, D. Campos, and et al., Phys. Med. 77, 138 (2020). https://pubmed.ncbi.nlm.nih.gov/32829102/
G. C. Baltz and et al., J. Appl. Clin. Med. Phys. 20, 89 (2019). https://pubmed.ncbi.nlm.nih.gov/30821903/
A. Karl, The Production of Custom Bolus using 3D printers for applications in Radiation Therapy. Master Thesis (University of Canterbury, 2016). https://ir.canterbury.ac.nz/items/df2e3de1-6799-43b0-a4e1-20da65fadd05
K. Bahhous, M. Zerfaoui, and et al., Journal of Radiotherapy in Practice 20, 210 (2020). https://www.semanticscholar.org/paper/Enhancing-benefits-of-bolus-use-through-minimising-Bahhous-Zerfaoui/4a0d101ae21326192ddc6119d272144d4e42d171
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.