EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD
EFECTO DE LA TEMPERATURA DE RECOCIDO SOBRE LAS PROPIEDADES ESTRUCTURALES Y TERMOELÉCTRICAS DE LAS NANOPARTÍCULAS DE CuFeS₂ PREPARADAS POR EL MÉTODO HIDROTERMAL
DOI:
https://doi.org/10.15446/mo.n70.114275Keywords:
Annealing, CuFeS₂, nanoparticles, Seebeck coefficient, thermoelectric (en)Recocido, CuFeS₂, nanopartículas, coeficiente Seebeck, termoeléctrico (es)
Downloads
The current study described precise and simple hydrothermal method used to synthesize CuFeS2 nanoparticles. The thermoelectric properties of CuFeS2 nanoparticles were studied under different conditions of annealing treatment. The phase structure, functional groups, and thermal stability of the CuFeS2 nanoparticles samples were analyzed via X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) results of the synthesized nanoparticles closely matched the CuFeS2 chalcopyrite patterns. FT-IR measurements confirmed the presence of the characteristic S-O, Fe-S, and O-H groups in the structure of the prepared nanoparticles. The TGA results indicate that the CuFeS2 nanoparticles are thermally stable below 650°C. The scan electron microscope (SEM) measurements revealed that the particle size of all the samples was less than 100 nm after the annealing treatment. The optical measurements showed that the absorbance edges of the CuFeS2 samples shifted to longer wavelengths after the annealing treatment. The thermoelectric measurements indicated that the annealing treatment modulated the electrical conductivity, Seebeck coefficient, power factor, and thermal conductivity of the CuFeS2 samples.
En este estudio, se sintetizaron nanopartículas de CuFeS₂ mediante el método hidrotermal. Las propiedades termoeléctricas se estudiaron bajo diferentes condiciones de tratamiento térmico. La estructura de fases, los grupos funcionales y la estabilidad térmica de las muestras de CuFeS₂ se analizaron mediante difractometría de rayos X (XRD), espectroscopia infrarroja por transformada de Fourier (FT-IR) y análisis termogravimétrico (TGA). Se descubrió que los resultados de la difracción de rayos X (DRX) de las nanopartículas sintetizadas coinciden estrechamente con los patrones de calcopirita CuFeS₂. Las mediciones de FT-IR confirman la presencia de grupos S-O, Fe-S y O-H en la estructura de las nanopartículas preparadas. Los resultados del análisis TGA indican que las nanopartículas de CuFeS₂ son térmicamente estables por debajo de 650°C. Las mediciones SEM mostraron que el tamaño de partícula de todas las muestras estaba por debajo de 100 nm después del tratamiento de recocido. Las mediciones ópticas mostraron que los bordes de absorbancia de las muestras de CuFeS₂ cambiaron a longitudes de onda más largas después del tratamiento de recocido. Las mediciones termoeléctricas indicaron que el tratamiento de recocido modula la conductividad eléctrica, el coeficiente de Seebeck, el factor de potencia y la conductividad térmica de las muestras de CuFeS₂.
References
L. E. Bell, Science 321, 1457 (2008). https://www.science.org/doi/abs/10.1126/science.1158899
F. J. DiSalvo, Science 285, 703 (1999). https://www.science.org/doi/abs/10.1126/science.285.5428.703
W. Liu, H. Kim, and et al., Scripta Materialia 111, 3 (2016). https://www.sciencedirect.com/science/article/abs/pii/S1359646215003449?via%3Dihub
W. He, G. Zhang, and et al., Applied Energy 143, 1 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0306261914013324?via%3Dihub
I. Chowdhury, R. Prasher, and et al., Nat. Nanotechnol. 4, 235 (2009). https://www.nature.com/articles/nnano.2008.417
D. Beretta, N. Neophytou, and et al., Mater. Sci. Eng. R: Rep. 138, 100501 (2019). https://linkinghub.elsevier.com/retrieve/pii/S0927796X18301566
Y. Wang, L. Yang, and et al., Adv. Mat. 31, 1807916 (2019). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201807916
G. Babu and X. Shajan, J. Mater. Sci.: Mater. Electron. 34, 2286 (2023). https://scholar.google.com/citations?view_op=view_citation&hl=en&user=W1r9xeAAAAAJ&citation_for_view=W1r9xeAAAAAJ:5nxA0vEk-isC
I. Cohen, M. Kaller, and et al., J. Mater. Chem. C 3, 9559 (2015). https://pubs.rsc.org/en/content/articlelanding/2015/tc/c5tc01781e
L. Fang, J. Liu, and et al., Appl. Phys. Lett. 97, 242501 (2010). https://pubs.aip.org/aip/apl/article-abstract/97/24/242501/122616/Experimental-and-theoretical-evidence-of-enhanced?redirectedFrom=fulltext
G. Guttmann, D. Dadon, and et al., J. Appl. Phys. 118, 065102 (2015). https://pubs.aip.org/aip/jap/article/118/6/065102/140780/Electronic-tuning-of-the-transport-properties-of
Y. Vahidshad, S. Mirkazemi, and et al., J. Nanstruct. 7, 284 (2017). https://jns.kashanu.ac.ir/article_50045.html
W. Liu, L. Yang, and et al., Adv. Mater. 32, 1905703 (2020). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201905703
B. Karuppannan, J. Sturgeon, and et al., SN Appl. Sci. 2, 1931 (2020). https://link.springer.com/article/10.1007/s42452-020-03729-4
J. R. Sootsman and et al., Angewandte Chemie Int. Ed. 48, 8616 (2009). https://onlinelibrary.wiley.com/doi/10.1002/anie.200900598
R. Akram, J. Akhtar, and et al., J. Mater. Sci.: Mater. Electron. 32, 24619 (2022). https://link.springer.com/article/10.1007/s10854-022-09172-y
S. Aoudj, A. Khelifa, and et al., Chem. Eng. J. 267, 153 (2015). https://linkinghub.elsevier.com/retrieve/pii/S1385894714017045
H. Dhiflaoui, N. Jaber, and et al., Thin Solid Films 638, 201 (2017). https://linkinghub.elsevier.com/retrieve/pii/S0040609017305515
T. Zhu, Y. Liu, and et al., Adv. Mater. 29, 1605884 (2017). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201605884
C. Kim, D. Lopez, and et al., J. Mater. Chem. A 7, 791 (2019). https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta05261a
L. Zhao, H.Wu, and et al., Energy Environ. Sci. 6, 3346 (2013). https://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee42187b
Y. Pei, X. Shi, and et al., Nature 473, 66 (2011). https://www.nature.com/articles/nature09996
M. Hong, Z. Chen, and et al., J. Mater. Chem. A 5, 10713 (2017). https://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta02677c
P. Zong, R. Hanus, and et al., Energy Environ. Sci. 10, 183 (2017). https://pubs.rsc.org/en/content/articlelanding/2017/ee/c6ee02467j
S. Kim, K. H. Lee, and et al, Science 348, 109 (2015). https://www.science.org/doi/10.1126/science.aaa4166
G. Han, Z. Chen, and et al., Small 10, 2747 (2014). https://onlinelibrary.wiley.com/doi/10.1002/smll.201400104
L. Huang, J. Lu, and et al., J. Mater. Chem. A 8, 1394 (2020). https://pubs.rsc.org/en/content/articlelanding/2020/ta/c9ta11737g
A. Umar, R. Kumar, and et al., J. Alloys Compd. 648, 46 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0925838815014541?via%3Dihub
M. Hong, Z. Chen, and et al., Nano Energy 20, 144 (2016). https://www.sciencedirect.com/science/article/abs/pii/S2211285515004851?via%3Dihub
A. Jafari, S. Shayesteh, and et al., J. Magn. Magn. Mater. 379, 305 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0304885314012633?via%3Dihub
A. Ashfaq, A. Ali, K. Mahmood, and et al., Ceram. Int. 47, 35356 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0272884221028571?via%3Dihub
D. K. Muthee and B. F. Dejene, Heliyon 7, e07269 (2021). 14 Safaa H. Ali, Saad S. Mohammed. https://linkinghub.elsevier.com/retrieve/pii/S2405844021013724
R. Suresh, V. Ponnuswamy, and R. Mariappan, Appl. Surf. Sci. 273, 457 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0169433213003802?via%3Dihub
S. Singh, N. Kumar, and et al., J. Supercond. Nov. Magn. 27, 821 (2014). https://link.springer.com/article/10.1007/s10948-013-2355-5
L. Attou, B. Jaber, and et al., Mediterr. J. Chem. 7, 308 (2018). https://medjchem.com/index.php/medjchem/article/view/781
S. Hasan and B. Azhdar, Ceram. Int. 49, 5371 (2023). https://linkinghub.elsevier.com/retrieve/pii/S0272884222036410
A. Zak, M. Abrishami, and et al., Ceram. Int 37, 393 (2011). https://www.sciencedirect.com/science/article/abs/pii/S0272884210003081?via%3Dihub
B. Shah, S. Chaki, and et al., Mater. Sci. Semicond. Process. 179, 108495 (2024). https://linkinghub.elsevier.com/retrieve/pii/S1369800124003913
U. Rehman, J. Jacob, and et al., Ceram. Int 46, 20496 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0272884220314425?via%3Dihub
M. Khan, J. Zhai, and et al., ChemPhysMater 2, 207 (2023). https://www.sciencedirect.com/science/article/pii/S2772571522000456?via%3Dihub
Y. Muddassir, S. Tahir, and et al., Appl. Phys. A 127, 457 (2021). https://link.springer.com/article/10.1007/s00339-021-04599-2
X. Meng, X. Jing, and et al., ACS Appl. Nano Mater. 7, 8175 (2024). https://pubs.acs.org/doi/10.1021/acsanm.4c00709
U. Rehman, K. Mahmood, and et al., Mater. Chem. Phys. 279, 125765 (2022). https://linkinghub.elsevier.com/retrieve/pii/S0254058422000712
M. Moorthy, P. Govindaraj, and et al., ACS Appl. Energy Mater. 7, 2008 (2024). https://pubs.acs.org/doi/10.1021/acsaem.3c03176
S. Ali, S. Mohammed, and et al., Chem. Chem. Technol. 16, 639 (2022). http://science2016.lp.edu.ua/chcht/photocatalytic-activity-defective-tio2-x-water-treatmentmethyl-orange-dye-degradation
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.