Published

2025-01-30

EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD

EFECTO DE LA TEMPERATURA DE RECOCIDO SOBRE LAS PROPIEDADES ESTRUCTURALES Y TERMOELÉCTRICAS DE LAS NANOPARTÍCULAS DE CuFeS₂ PREPARADAS POR EL MÉTODO HIDROTERMAL

DOI:

https://doi.org/10.15446/mo.n70.114275

Keywords:

Annealing, CuFeS₂, nanoparticles, Seebeck coefficient, thermoelectric (en)
Recocido, CuFeS₂, nanopartículas, coeficiente Seebeck, termoeléctrico (es)

Downloads

Authors

  • Safaa H. Ali Al-Shatrah University, College of Education, Department of Physics. https://orcid.org/0000-0003-4924-7453
  • Saad S. Mohammed University of Thi-Qar, College of Science, Department of Chemistry

The current study described precise and simple hydrothermal method used to synthesize CuFeS2 nanoparticles. The thermoelectric properties of CuFeS2 nanoparticles were studied under different conditions of annealing treatment. The phase structure, functional groups, and thermal stability of the CuFeS2 nanoparticles samples were analyzed via X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) results of the synthesized nanoparticles closely matched  the CuFeS2 chalcopyrite patterns. FT-IR measurements confirmed the presence of the characteristic S-O, Fe-S, and O-H groups in the structure of the prepared nanoparticles. The TGA results indicate that  the CuFeS2 nanoparticles are thermally stable below 650°C. The scan electron microscope (SEM) measurements revealed that the particle size of all the samples was less than 100 nm after the  annealing treatment. The optical measurements showed that the absorbance edges of the CuFeS2 samples shifted to longer wavelengths after the  annealing treatment. The thermoelectric measurements indicated that the annealing treatment modulated the electrical conductivity, Seebeck coefficient, power factor, and thermal conductivity of the CuFeS2 samples.

En este estudio, se sintetizaron nanopartículas de CuFeS₂ mediante el  método hidrotermal. Las propiedades termoeléctricas se estudiaron bajo  diferentes condiciones de tratamiento  térmico. La estructura de fases, los grupos funcionales y la estabilidad térmica de las  muestras de CuFeS₂ se analizaron  mediante difractometría de rayos X (XRD),  espectroscopia infrarroja por transformada de Fourier (FT-IR) y análisis termogravimétrico (TGA). Se descubrió que los resultados de la difracción de rayos X  (DRX) de las nanopartículas sintetizadas  coinciden estrechamente con los patrones  de calcopirita CuFeS₂. Las mediciones de  FT-IR confirman la presencia de grupos S-O, Fe-S y O-H en la estructura de las nanopartículas preparadas. Los resultados  del análisis TGA indican que las nanopartículas de CuFeS₂ son  térmicamente estables por debajo de 650°C. Las mediciones SEM mostraron que el tamaño de partícula de todas las muestras estaba por debajo de 100 nm después del tratamiento de recocido. Las mediciones ópticas mostraron que los bordes de absorbancia de las muestras de CuFeS₂ cambiaron a longitudes de onda más largas después del tratamiento de recocido. Las mediciones termoeléctricas  indicaron que el tratamiento de recocido modula la conductividad eléctrica, el coeficiente de Seebeck, el factor de  potencia y la conductividad térmica de las  muestras de CuFeS₂.

References

L. E. Bell, Science 321, 1457 (2008). https://www.science.org/doi/abs/10.1126/science.1158899

F. J. DiSalvo, Science 285, 703 (1999). https://www.science.org/doi/abs/10.1126/science.285.5428.703

W. Liu, H. Kim, and et al., Scripta Materialia 111, 3 (2016). https://www.sciencedirect.com/science/article/abs/pii/S1359646215003449?via%3Dihub

W. He, G. Zhang, and et al., Applied Energy 143, 1 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0306261914013324?via%3Dihub

I. Chowdhury, R. Prasher, and et al., Nat. Nanotechnol. 4, 235 (2009). https://www.nature.com/articles/nnano.2008.417

D. Beretta, N. Neophytou, and et al., Mater. Sci. Eng. R: Rep. 138, 100501 (2019). https://linkinghub.elsevier.com/retrieve/pii/S0927796X18301566

Y. Wang, L. Yang, and et al., Adv. Mat. 31, 1807916 (2019). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201807916

G. Babu and X. Shajan, J. Mater. Sci.: Mater. Electron. 34, 2286 (2023). https://scholar.google.com/citations?view_op=view_citation&hl=en&user=W1r9xeAAAAAJ&citation_for_view=W1r9xeAAAAAJ:5nxA0vEk-isC

I. Cohen, M. Kaller, and et al., J. Mater. Chem. C 3, 9559 (2015). https://pubs.rsc.org/en/content/articlelanding/2015/tc/c5tc01781e

L. Fang, J. Liu, and et al., Appl. Phys. Lett. 97, 242501 (2010). https://pubs.aip.org/aip/apl/article-abstract/97/24/242501/122616/Experimental-and-theoretical-evidence-of-enhanced?redirectedFrom=fulltext

G. Guttmann, D. Dadon, and et al., J. Appl. Phys. 118, 065102 (2015). https://pubs.aip.org/aip/jap/article/118/6/065102/140780/Electronic-tuning-of-the-transport-properties-of

Y. Vahidshad, S. Mirkazemi, and et al., J. Nanstruct. 7, 284 (2017). https://jns.kashanu.ac.ir/article_50045.html

W. Liu, L. Yang, and et al., Adv. Mater. 32, 1905703 (2020). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201905703

B. Karuppannan, J. Sturgeon, and et al., SN Appl. Sci. 2, 1931 (2020). https://link.springer.com/article/10.1007/s42452-020-03729-4

J. R. Sootsman and et al., Angewandte Chemie Int. Ed. 48, 8616 (2009). https://onlinelibrary.wiley.com/doi/10.1002/anie.200900598

R. Akram, J. Akhtar, and et al., J. Mater. Sci.: Mater. Electron. 32, 24619 (2022). https://link.springer.com/article/10.1007/s10854-022-09172-y

S. Aoudj, A. Khelifa, and et al., Chem. Eng. J. 267, 153 (2015). https://linkinghub.elsevier.com/retrieve/pii/S1385894714017045

H. Dhiflaoui, N. Jaber, and et al., Thin Solid Films 638, 201 (2017). https://linkinghub.elsevier.com/retrieve/pii/S0040609017305515

T. Zhu, Y. Liu, and et al., Adv. Mater. 29, 1605884 (2017). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201605884

C. Kim, D. Lopez, and et al., J. Mater. Chem. A 7, 791 (2019). https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta05261a

L. Zhao, H.Wu, and et al., Energy Environ. Sci. 6, 3346 (2013). https://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee42187b

Y. Pei, X. Shi, and et al., Nature 473, 66 (2011). https://www.nature.com/articles/nature09996

M. Hong, Z. Chen, and et al., J. Mater. Chem. A 5, 10713 (2017). https://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta02677c

P. Zong, R. Hanus, and et al., Energy Environ. Sci. 10, 183 (2017). https://pubs.rsc.org/en/content/articlelanding/2017/ee/c6ee02467j

S. Kim, K. H. Lee, and et al, Science 348, 109 (2015). https://www.science.org/doi/10.1126/science.aaa4166

G. Han, Z. Chen, and et al., Small 10, 2747 (2014). https://onlinelibrary.wiley.com/doi/10.1002/smll.201400104

L. Huang, J. Lu, and et al., J. Mater. Chem. A 8, 1394 (2020). https://pubs.rsc.org/en/content/articlelanding/2020/ta/c9ta11737g

A. Umar, R. Kumar, and et al., J. Alloys Compd. 648, 46 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0925838815014541?via%3Dihub

M. Hong, Z. Chen, and et al., Nano Energy 20, 144 (2016). https://www.sciencedirect.com/science/article/abs/pii/S2211285515004851?via%3Dihub

A. Jafari, S. Shayesteh, and et al., J. Magn. Magn. Mater. 379, 305 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0304885314012633?via%3Dihub

A. Ashfaq, A. Ali, K. Mahmood, and et al., Ceram. Int. 47, 35356 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0272884221028571?via%3Dihub

D. K. Muthee and B. F. Dejene, Heliyon 7, e07269 (2021). 14 Safaa H. Ali, Saad S. Mohammed. https://linkinghub.elsevier.com/retrieve/pii/S2405844021013724

R. Suresh, V. Ponnuswamy, and R. Mariappan, Appl. Surf. Sci. 273, 457 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0169433213003802?via%3Dihub

S. Singh, N. Kumar, and et al., J. Supercond. Nov. Magn. 27, 821 (2014). https://link.springer.com/article/10.1007/s10948-013-2355-5

L. Attou, B. Jaber, and et al., Mediterr. J. Chem. 7, 308 (2018). https://medjchem.com/index.php/medjchem/article/view/781

S. Hasan and B. Azhdar, Ceram. Int. 49, 5371 (2023). https://linkinghub.elsevier.com/retrieve/pii/S0272884222036410

A. Zak, M. Abrishami, and et al., Ceram. Int 37, 393 (2011). https://www.sciencedirect.com/science/article/abs/pii/S0272884210003081?via%3Dihub

B. Shah, S. Chaki, and et al., Mater. Sci. Semicond. Process. 179, 108495 (2024). https://linkinghub.elsevier.com/retrieve/pii/S1369800124003913

U. Rehman, J. Jacob, and et al., Ceram. Int 46, 20496 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0272884220314425?via%3Dihub

M. Khan, J. Zhai, and et al., ChemPhysMater 2, 207 (2023). https://www.sciencedirect.com/science/article/pii/S2772571522000456?via%3Dihub

Y. Muddassir, S. Tahir, and et al., Appl. Phys. A 127, 457 (2021). https://link.springer.com/article/10.1007/s00339-021-04599-2

X. Meng, X. Jing, and et al., ACS Appl. Nano Mater. 7, 8175 (2024). https://pubs.acs.org/doi/10.1021/acsanm.4c00709

U. Rehman, K. Mahmood, and et al., Mater. Chem. Phys. 279, 125765 (2022). https://linkinghub.elsevier.com/retrieve/pii/S0254058422000712

M. Moorthy, P. Govindaraj, and et al., ACS Appl. Energy Mater. 7, 2008 (2024). https://pubs.acs.org/doi/10.1021/acsaem.3c03176

S. Ali, S. Mohammed, and et al., Chem. Chem. Technol. 16, 639 (2022). http://science2016.lp.edu.ua/chcht/photocatalytic-activity-defective-tio2-x-water-treatmentmethyl-orange-dye-degradation

How to Cite

APA

Ali, S. H. and Mohammed, S. S. (2025). EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD. MOMENTO, (70), 45–58. https://doi.org/10.15446/mo.n70.114275

ACM

[1]
Ali, S.H. and Mohammed, S.S. 2025. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD. MOMENTO. 70 (Jan. 2025), 45–58. DOI:https://doi.org/10.15446/mo.n70.114275.

ACS

(1)
Ali, S. H.; Mohammed, S. S. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD. Momento 2025, 45-58.

ABNT

ALI, S. H.; MOHAMMED, S. S. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD. MOMENTO, [S. l.], n. 70, p. 45–58, 2025. DOI: 10.15446/mo.n70.114275. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/114275. Acesso em: 8 mar. 2025.

Chicago

Ali, Safaa H., and Saad S. Mohammed. 2025. “EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD”. MOMENTO, no. 70 (January):45-58. https://doi.org/10.15446/mo.n70.114275.

Harvard

Ali, S. H. and Mohammed, S. S. (2025) “EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD”, MOMENTO, (70), pp. 45–58. doi: 10.15446/mo.n70.114275.

IEEE

[1]
S. H. Ali and S. S. Mohammed, “EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD”, Momento, no. 70, pp. 45–58, Jan. 2025.

MLA

Ali, S. H., and S. S. Mohammed. “EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD”. MOMENTO, no. 70, Jan. 2025, pp. 45-58, doi:10.15446/mo.n70.114275.

Turabian

Ali, Safaa H., and Saad S. Mohammed. “EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD”. MOMENTO, no. 70 (January 30, 2025): 45–58. Accessed March 8, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/114275.

Vancouver

1.
Ali SH, Mohammed SS. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND THERMOELECTRIC PROPERTIES OF CuFeS2 NANOPARTICLES PREPARED BY THE HYDROTHERMAL METHOD. Momento [Internet]. 2025 Jan. 30 [cited 2025 Mar. 8];(70):45-58. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/114275

Download Citation