Published

2024-07-30

q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS

OPERADORES DE DIFERENCIALES q- Y DERIVACIONES DE LAS ALGEBRAS INVARIANTES RELATIVISTAS CUADRÁTICAS

DOI:

https://doi.org/10.15446/mo.n69.115338

Keywords:

q− relativistic invariant algebras, Lorentz invariant, quadratic relativistic algebras, q− difference operators and derivations (en)
invariante de Lorentz, q− álgebras invariantes relativistas, álgebras cuadráticas relativistas, q− operadores diferenciales y derivaciones (es)

Downloads

Authors

This study aims to develop a new algebra based on the Minkowskian product or relativistic Lorentz invariants. This leads to the notion of q- invariant algebras, defining q- deformed quadratic relativistic algebras and establishing some q- differential operators and derivations. Then, from these algebras, we define the q- relativistic invariant function on a free algebra k⟨x, y, z, u⟩ with the objective of formulating the q- differential quadratic operators. On the other hand, we define the q- quadratic differential operators on the Clifford algebra Cl0,n. We consider the case of a polynomial function in the noncommutative quadratic variables x2, y2, z2 and u2, obtaining the q- differential quadratic operators for these functions with their respective properties. Furthermore, we formulate the q- quadratic Dirac differential operators. On the other hand, on the algebra Ψ with the generators x, y, we have proposed the extended derivation with its corresponding properties, in order to apply it to the q- relativistic invariant algebras and make a relationship with the q- Dirac quadratic operators. On a function of non-commutative quadratic variables, we define the q- quadratic differentiation operators Dq2 with their properties, and finally some applications for further work.

Este estudio tiene como objetivo desarrollar una nueva álgebra basada en el producto minkowskiano o invariantes
relativistas de Lorentz. Esto lleva a la noción de q− álgebras invariantes, definiendo q− álgebras relativistas cuadráticas deformadas y estableciendo algunos q− operadores diferenciales y derivaciones. Luego, a partir de estas álgebras, definimos la q− función invariante relativista sobre un álgebra libre k⟨x, y, z, u⟩ con el objetivo de formular los q− operadores diferenciales cuadráticos. Por otro lado, definimos los q− operadores diferenciales cuadráticos sobre el álgebra de Clifford Cl0,n. Consideramos el caso de una función polinómica en las variables cuadráticas no conmutativas x2, y2, z2 y u2, obteniendo los q− operadores cuadráticos diferenciales para estas funciones con sus correspondientes propiedades. Además, formulamos los q− operadores diferenciales cuadráticos de Dirac. Por otro lado, sobre el álgebra Ψ con los generadores x, y, hemos propuesto la derivación extendida con sus respectivas propiedades, con el fin de aplicarla a las q− álgebras invariantes relativistas y realizar una relación con los q− operadores cuadráticos de Dirac. Sobre una función de variables cuadráticas no conmutativas, definimos los q− operadores de derivación cuadráticos Dq2 con sus propiedades, y finalmente algunas aplicaciones para trabajos posteriores.

References

F. H. Jackson, Earth Environ. Sci. Trans. R. Soc. Edinb. 46, 253 (1909). https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/abs/xion-qfunctions-and-a-certain-difference-operator/5616DDF41A723C590CF19A13204F7689

E. Hamza, S. Sarhan, M. Shehata, and A. Aldwoah, Advances in Difference Equations , 1 (2015). https://link.springer.com/content/pdf/10.1186/s13662-015-0518-3.pdf

R. G. Halburd and R.J. Korhonen, Physica D: Nonlinear Phenomena 218, 191 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0167278906001783?via%3Dihub

A. V. Golovashkin and V. Maksimov, Russian Math. Surveys (1998). https://chooser.crossref.org/?doi=10.1070%2FRM1998v053n02ABEH000036

H. Rosengren, Journal of Geometry and Physics 32, 349 (2000). https://www.sciencedirect.com/science/article/abs/pii/S0393044099000327?via%3Dihub

A. V. Golovashkin and V.M. Maksimov, J. Math. Sci. 129, 3757 (2005). https://link.springer.com/article/10.1007/s10958-005-0311-z

E. N. Shirikov, Algebra Discrete Math 3, 60 (2005). https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=adm&paperid=313&option_lang=eng

O. Norgren, Mathematical Special Relativity (Uppsala University, 2021) p. 2. https://uu.diva-portal.org/smash/get/diva2:1530561/FULLTEXT01.pdf

W. Werr, Proceedings of the CAS-CERN Accelerator School on Free Electron Lasers and Energy Recovery Linacs 1, 1 (2018). https://e-publishing.cern.ch/index.php/CYRSP/issue/view/47

K. R. Goodearl and R. B. Warfield, An Introduction to Noncommutative Noetherian Rings (Cambridge University Press, 2004). https://www.cambridge.org/core/books/an-introduction-to-noncommutative-noetherian-rings/B3F6B77E8437A22DDE6BA14A3E98C283

K. Coulembier and F. Sommen, Adv. Appl. Clifford Algebras 21, 677 (2011). https://link.springer.com/article/10.1007/s00006-011-0281-9

G. Yafang and D. Jinyuan, Adv. Appl. Clifford Algebras 12, 125 (2002). https://link.springer.com/article/10.1007/BF03161243

N. Faustino and U. Kähler, Adv. Appl. Clifford Algebras 17, 37 (2007). https://link.springer.com/article/10.1007/s00006-006-0016-5

H. B. Benaoum, J. Phys. A: Math. Gen. 32, 2037 (1999). https://iopscience.iop.org/article/10.1088/0305-4470/32/10/019

A.D.. Teodoro, R. Franquiz, and A. López, Adv. Appl. Clifford Algebras 25, 303 (2015). https://link.springer.com/article/10.1007/s00006-014-0510-0

J. C. Jaramillo, Revista Integración, temas de matemáticas 41, 43 (2023). https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/14305

How to Cite

APA

Jaramillo-Quiceno, J. C. (2024). q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS. MOMENTO, (69), 116–136. https://doi.org/10.15446/mo.n69.115338

ACM

[1]
Jaramillo-Quiceno, J.C. 2024. q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS. MOMENTO. 69 (Jul. 2024), 116–136. DOI:https://doi.org/10.15446/mo.n69.115338.

ACS

(1)
Jaramillo-Quiceno, J. C. q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS. Momento 2024, 116-136.

ABNT

JARAMILLO-QUICENO, J. C. q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS. MOMENTO, [S. l.], n. 69, p. 116–136, 2024. DOI: 10.15446/mo.n69.115338. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/115338. Acesso em: 24 jan. 2025.

Chicago

Jaramillo-Quiceno, Julio C. 2024. “q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS”. MOMENTO, no. 69 (July):116-36. https://doi.org/10.15446/mo.n69.115338.

Harvard

Jaramillo-Quiceno, J. C. (2024) “q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS”, MOMENTO, (69), pp. 116–136. doi: 10.15446/mo.n69.115338.

IEEE

[1]
J. C. Jaramillo-Quiceno, “q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS”, Momento, no. 69, pp. 116–136, Jul. 2024.

MLA

Jaramillo-Quiceno, J. C. “q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS”. MOMENTO, no. 69, July 2024, pp. 116-3, doi:10.15446/mo.n69.115338.

Turabian

Jaramillo-Quiceno, Julio C. “q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS”. MOMENTO, no. 69 (July 30, 2024): 116–136. Accessed January 24, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/115338.

Vancouver

1.
Jaramillo-Quiceno JC. q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS. Momento [Internet]. 2024 Jul. 30 [cited 2025 Jan. 24];(69):116-3. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/115338

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

155

Downloads

Download data is not yet available.