q− DIFFERENTIAL OPERATORS AND DERIVATIONS ON THE QUADRATIC RELATIVISTC INVARIANT ALGEBRAS
OPERADORES DE DIFERENCIALES q- Y DERIVACIONES DE LAS ALGEBRAS INVARIANTES RELATIVISTAS CUADRÁTICAS
DOI:
https://doi.org/10.15446/mo.n69.115338Keywords:
q− relativistic invariant algebras, Lorentz invariant, quadratic relativistic algebras, q− difference operators and derivations (en)invariante de Lorentz, q− álgebras invariantes relativistas, álgebras cuadráticas relativistas, q− operadores diferenciales y derivaciones (es)
Downloads
This study aims to develop a new algebra based on the Minkowskian product or relativistic Lorentz invariants. This leads to the notion of q- invariant algebras, defining q- deformed quadratic relativistic algebras and establishing some q- differential operators and derivations. Then, from these algebras, we define the q- relativistic invariant function on a free algebra k⟨x, y, z, u⟩ with the objective of formulating the q- differential quadratic operators. On the other hand, we define the q- quadratic differential operators on the Clifford algebra Cl0,n. We consider the case of a polynomial function in the noncommutative quadratic variables x2, y2, z2 and u2, obtaining the q- differential quadratic operators for these functions with their respective properties. Furthermore, we formulate the q- quadratic Dirac differential operators. On the other hand, on the algebra Ψ with the generators x, y, we have proposed the extended derivation with its corresponding properties, in order to apply it to the q- relativistic invariant algebras and make a relationship with the q- Dirac quadratic operators. On a function of non-commutative quadratic variables, we define the q- quadratic differentiation operators Dq2 with their properties, and finally some applications for further work.
Este estudio tiene como objetivo desarrollar una nueva álgebra basada en el producto minkowskiano o invariantes
relativistas de Lorentz. Esto lleva a la noción de q− álgebras invariantes, definiendo q− álgebras relativistas cuadráticas deformadas y estableciendo algunos q− operadores diferenciales y derivaciones. Luego, a partir de estas álgebras, definimos la q− función invariante relativista sobre un álgebra libre k⟨x, y, z, u⟩ con el objetivo de formular los q− operadores diferenciales cuadráticos. Por otro lado, definimos los q− operadores diferenciales cuadráticos sobre el álgebra de Clifford Cl0,n. Consideramos el caso de una función polinómica en las variables cuadráticas no conmutativas x2, y2, z2 y u2, obteniendo los q− operadores cuadráticos diferenciales para estas funciones con sus correspondientes propiedades. Además, formulamos los q− operadores diferenciales cuadráticos de Dirac. Por otro lado, sobre el álgebra Ψ con los generadores x, y, hemos propuesto la derivación extendida con sus respectivas propiedades, con el fin de aplicarla a las q− álgebras invariantes relativistas y realizar una relación con los q− operadores cuadráticos de Dirac. Sobre una función de variables cuadráticas no conmutativas, definimos los q− operadores de derivación cuadráticos Dq2 con sus propiedades, y finalmente algunas aplicaciones para trabajos posteriores.
References
F. H. Jackson, Earth Environ. Sci. Trans. R. Soc. Edinb. 46, 253 (1909). https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/abs/xion-qfunctions-and-a-certain-difference-operator/5616DDF41A723C590CF19A13204F7689
E. Hamza, S. Sarhan, M. Shehata, and A. Aldwoah, Advances in Difference Equations , 1 (2015). https://link.springer.com/content/pdf/10.1186/s13662-015-0518-3.pdf
R. G. Halburd and R.J. Korhonen, Physica D: Nonlinear Phenomena 218, 191 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0167278906001783?via%3Dihub
A. V. Golovashkin and V. Maksimov, Russian Math. Surveys (1998). https://chooser.crossref.org/?doi=10.1070%2FRM1998v053n02ABEH000036
H. Rosengren, Journal of Geometry and Physics 32, 349 (2000). https://www.sciencedirect.com/science/article/abs/pii/S0393044099000327?via%3Dihub
A. V. Golovashkin and V.M. Maksimov, J. Math. Sci. 129, 3757 (2005). https://link.springer.com/article/10.1007/s10958-005-0311-z
E. N. Shirikov, Algebra Discrete Math 3, 60 (2005). https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=adm&paperid=313&option_lang=eng
O. Norgren, Mathematical Special Relativity (Uppsala University, 2021) p. 2. https://uu.diva-portal.org/smash/get/diva2:1530561/FULLTEXT01.pdf
W. Werr, Proceedings of the CAS-CERN Accelerator School on Free Electron Lasers and Energy Recovery Linacs 1, 1 (2018). https://e-publishing.cern.ch/index.php/CYRSP/issue/view/47
K. R. Goodearl and R. B. Warfield, An Introduction to Noncommutative Noetherian Rings (Cambridge University Press, 2004). https://www.cambridge.org/core/books/an-introduction-to-noncommutative-noetherian-rings/B3F6B77E8437A22DDE6BA14A3E98C283
K. Coulembier and F. Sommen, Adv. Appl. Clifford Algebras 21, 677 (2011). https://link.springer.com/article/10.1007/s00006-011-0281-9
G. Yafang and D. Jinyuan, Adv. Appl. Clifford Algebras 12, 125 (2002). https://link.springer.com/article/10.1007/BF03161243
N. Faustino and U. Kähler, Adv. Appl. Clifford Algebras 17, 37 (2007). https://link.springer.com/article/10.1007/s00006-006-0016-5
H. B. Benaoum, J. Phys. A: Math. Gen. 32, 2037 (1999). https://iopscience.iop.org/article/10.1088/0305-4470/32/10/019
A.D.. Teodoro, R. Franquiz, and A. López, Adv. Appl. Clifford Algebras 25, 303 (2015). https://link.springer.com/article/10.1007/s00006-014-0510-0
J. C. Jaramillo, Revista Integración, temas de matemáticas 41, 43 (2023). https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/14305
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.