REDUCTION OF POTENTIAL RADIOLOGICAL RISKS FOR PATIENTS UNDERGOING DIAGNOSTIC EXAMS THROUGH MODIFICATION OF THE X-RAY SPECTRUM
REDUCCIÓN DE RIESGOS RADIOLÓGICOS POTENCIALES PARA PACIENTES SOMETIDOS A EXÁMENES DE DIAGNÓSTICO MEDIANTE LA MODIFICACIÓN DEL ESPECTRO DE RAYOS X
DOI:
https://doi.org/10.15446/mo.n69.115340Keywords:
X-ray spectrum, absorbed dose, filtration, copper filters, radiographic technique (en)espectro de rayos X, dosis absorbida, filtración, filtros de cobre, técnica radiográfica (es)
Downloads
The diagnostic medical practice using X-rays significantly contributes to the collective dose worldwide, where the inherent risk in each examination is proportional to the absorbed dose, which is related to deterministic and stochastic effects of ionizing radiation. Therefore, due to the necessity of optimizing each radiological procedure, this study aimed to reduce the absorbed dose in patients undergoing X-ray examinations by evaluating each parameter that modifies the spectral distribution. The Birch and Marshall method was employed to reconstruct and modify the X-ray spectra based on tube voltage, filtration, tube current, anode angle, and energy fluence modulation. By modifying these parameters, it was possible to reduce the absorbed dose in the patient’s skin by up to 38%. The proposed methodology is feasible for implementation in clinical centers, given the availability of copper filters incorporated into X-ray equipment. Additionally, an alternative technique involving tantalum filters is presented, achieving a reduction in absorbed dose of up to 57%. Thus, with the developed methodology, it is demonstrated that it is possible to reduce radiation doses by modifying spectral distributions, reproducing medical images with a significant reduction in the absorbed dose to the patient, while ensuring quality and safety in X-ray diagnostic procedures.
La práctica médica diagnóstica con rayos X contribuye ampliamente a la dosis colectiva a nivel mundial, donde el riesgo inherente en cada examen es proporcional a la dosis absorbida, que está relacionada con los efectos determinísticos y estocásticos de la radiación ionizante. Por lo tanto, debido a la necesidad de optimizar cada procedimiento radiológico, este trabajo tuvo como objetivo reducir la dosis absorbida en pacientes sometidos a exámenes con rayos X mediante la evaluación de cada uno de los parámetros que modifican la distribución espectral. Se utilizó el método de Birch y Marshall para reconstruir y modificar los espectros de rayos X en función del voltaje del tubo, la filtración, la corriente del tubo, el ángulo del ánodo y el factor de modulación de fluencia energética. Modificando estos parámetros, se logró reducir la dosis absorbida en la piel del paciente hasta un 38%. La metodología propuesta es factible para la implementación en centros clínicos, dado que existen filtros de cobre incorporados en los equipos de rayos X. Además, se presenta una técnica alternativa que utiliza filtros de tantalio, logrando una reducción de la dosis absorbida de hasta un 57%. De esta manera, con la metodología desarrollada se demuestra que es posible reducir las dosis de radiación al modificar las distribuciones espectrales, reproduciendo imágenes médicas con una reducción significativa de la dosis absorbida en el paciente, garantizando al mismo tiempo la calidad y seguridad en los procedimientos de diagnóstico con rayos X.
References
ICRP, "Managing Patient Dose in Digital Radiology," Vol. 34 (ICRP Publication 93, 2004). https://www.icrp.org/publication.asp?id=ICRP%20Publication%2093
B. Müller, J. Singer, et al., Rofo 194, 400 (2022). https://pubmed.ncbi.nlm.nih.gov/34933352/
OTAN, Lesión dérmica radioinducida al paciente con siglas AAGA. Resolución directoral no. 2240-22-ipen/otan (2022). https://www.gob.pe/institucion/ipen/normas-legales/3619358-2240-2022-ipen-otan
IPEN, Lesión dérmica radioinducida al paciente con siglas AAGA. Resolución de presidencia no. d000188-2022-ipen-pres (2022). https://www.gob.pe/institucion/ipen/normas-legales/3813374-214-2022-ipen-pres
G. Poludniowski, Med. Phys. 34, 2175 (2007). https://pubmed.ncbi.nlm.nih.gov/17654920/
K. Peglow, M. Yuamoto, et al., Use of additional filters for optimization of the chest X-ray examination protocol using CDRAD Phantom simulator (Congress: EuroSafe Imaging 2021, Poster Number: ESI-11867). https://epos.myesr.org/poster/esr/eurosafeimaging2021/ESI-11867
F. Salvat, J. Fernández, J. Sempau, Quantum phase transitions and structural evolution in nuclei (PENELOPE-2018: Workshop proceedings, 2019). https://www.oecd-ilibrary.org/nuclear-energy/penelope-2018-a-code-system-for-monte-carlo-simulation-of-electron-and-photon-transport_32da5043-en
M. Côrte Brochi, Métodos de Simulação Computacional para Redução de Dose em Radiodiagnóstico. Departamento de física, Universidad de São Paulo, Master’s thesis (1990). https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/025/25025502.pdf
R. Nowotny, A. Höfer, Rofo 142, 685 (1985). https://pubmed.ncbi.nlm.nih.gov/2988070/
R. Birch, M. Marshall, Phys. Med. Biol. 24, 505 (1979). https://pubmed.ncbi.nlm.nih.gov/461510/
T. Benavente, J. Márquez, J. S. Cruz, Revista de investigación de Física, UNMSM 2, 52 (1999). https://sisbib.unmsm.edu.pe/bibvirtualdata/publicaciones/fisica/v01n2/Caraterizacion.pdf
N. Dyson, Phys. Med. Biol. 20, 1 (1975). https://iopscience.iop.org/article/10.1088/0031-9155/20/1/001
A. Brosed, Fundamentos de Física Médica, Vol. 1 (SEFM, 2012). https://proteccionradiologica.cl/wp-content/uploads/2016/08/4.1-Libro-volumen-1-fisica-medica-espa%C3%B1ol.pdf
M. Berger, J. Hubbell, et al., XCOM: Photon Cross Section Database, Version 1.3, NIST (2007). https://www.nist.gov/pml/xcom-photon-cross-sections-database
A. López, F. Salvador, et al., Radioprotección 32, 5 (2002). https://www.sepr.es/profesionales/radioproteccion-revista
G. Poludniowski, Med. Phys. 34, 2175 (2007). https://pubmed.ncbi.nlm.nih.gov/17654920/
Leeds Test Objects Limited, Leeds Test Objects, TOR CDR (Manual) (2005). https://www.leedstestobjects.com/wp-content/uploads/Leeds-Test-Objects_product_brochure_3.8.pdf
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Alexsandro Guimarães, Felipe Borges, Carlos Ubeda, Cassiana Viccari, Carmen Sandra Guzmán Calcina, Thatiane Pianoschi, Mirko Salomón Alva-Sánchez. (2024). In vivo measurements in pediatric computed tomography with TLD: A correlation between CDTIvol values. Radiation Measurements, 177, p.107275. https://doi.org/10.1016/j.radmeas.2024.107275.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.