BENEFICIOS Y RETOS DE LA INTEGRACIÓN DE LA NANOTECNOLOGÍA EN LA MEDICINA: UNA REVISIÓN SISTEMÁTICA
BENEFITS AND CHALLENGES OF INTEGRATING NANOTECHNOLOGY IN MEDICINE: A SYSTEMATIC REVIEW
DOI:
https://doi.org/10.15446/mo.n70.116298Keywords:
nanotecnología, nanopartículas, nanomedicina, nano-terapia, bio-medicina (es)nanotechnology, nanoparticles, nanomedicine, nano-therapy, biomedicine (en)
Downloads
La medicina nanotecnológica ha propiciado progresos importantes, proporcionando soluciones revolucionarias para el diagnóstico y tratamiento de enfermedades, aunque aún existen retos, como asegurar su seguridad y escalabilidad. Esta revisión metódica examina las últimas aplicaciones de la nanotecnología en la medicina personalizada, centrándose en su habilidad para elaborar tratamientos de acuerdo con las particularidades de cada individuo. Las nanopartículas se distinguen por incrementar la exactitud en la administración de medicamentos, disminuyendo los efectos adversos, particularmente en terapias para el cáncer. Adicionalmente, tecnologías tales como biosensores y dispositivos de imagen a nanoescala mejoran los diagnósticos, aumentando las oportunidades de éxito en el ámbito clínico. En el ámbito de la regeneración e ingeniería de tejidos, los nanomateriales, al replicar la matriz extracelular, promueven la regeneración celular y la creación de órganos sintéticos. No obstante, todavía persisten preocupaciones respecto a la biocompatibilidad de estos materiales, dado que aún no se ha entendido completamente su interacción con los sistemas biológicos ni los posibles impactos en el futuro. La producción y supervisión de la calidad de los nanomateriales son costosas y técnicamente complicadas, lo que obstaculiza su accesibilidad y escalabilidad. Además, la ausencia de normativas definidas demora la puesta en marcha de estas innovaciones. Esta revisión no solo aspira a reunir éxitos fundamentales, sino también a impulsar la propagación del saber en América Latina, donde el acceso a datos científicos especializados es restringido, impactando a alumnos e investigadores. Con más estudios sobre interacciones biológicas y normalización de procesos, la nanotecnología podría establecerse como un instrumento de cambio en la medicina, mejorando los tratamientos y potenciando la salud pública en la región.
Integrating nanotechnology into medicine offers significant advances with numerous benefits, but it also faces considerable challenges. Nanoparticles allow targeted drug delivery, improving therapeutic efficacy and minimizing side effects. For example, in cancer treatment, nanoparticles can deliver drugs directly to tumor cells, protecting healthy tissues. In addition, biosensors and nanometer-scale imaging facilitate faster and more accurate diagnoses, increasing the chances of successful treatments. Tissue regeneration and engineering also benefit from nanomaterials, which can mimic the extracellular matrix and promote cell regeneration. However, the biocompatibility and toxicity of nanomaterials raise concerns. Interactions at the nanometer level can have unpredictable effects on the human body, and a lack of full understanding of these interactions leads to potential health risks. In addition, nanomaterials' manufacturing and quality control are expensive and technically challenging, limiting their accessibility and scalability. Clear regulations and standards are essential to ensure the safety and efficacy of nanotechnology-based treatments. The approval of new devices and therapies requires rigorous evaluation, and the absence of specific regulations can delay the implementation of these advances.
References
Y. Tang and J. Fu, Adv. Mater. Sci. Eng. 2022, 1 (2022). https://onlinelibrary.wiley.com/doi/10.1155/2022/2065744
J. Sun, J. Du, and et al., J. Nanobiotechnol. 22, 270 (2024). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02540-2
S. Fraissinet and et al., Commun. Earth Environ. 5, 128 (2024). https://www.nature.com/articles/s43247-024-01300-2
J. Li and et al., J. Nanobiotechnol. 19, 417 (2021). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-01165-z
R. Valsalakumari and et al., Int. J. Nanomedicine 19, 3009 (2024). https://www.dovepress.com/preclinical-efficacy-of-cabazitaxel-loaded-poly2-alkyl-cyanoacrylate-n-peer-reviewed-fulltext-article-IJN
Y. Wang and et al., Int. J. Nanomedicine 19, 5837 (2024). https://www.dovepress.com/tumor-cell-targeting-and-tumor-microenvironmentresponsive-nanoplatform-peer-reviewed-fulltext-article-IJN
B. Zhang and et al., Acta Pharm. Sinica B 11, 246 (2021). https://www.sciencedirect.com/science/article/pii/S2211383520306730?via%3Dihub
L. Giloteaux and et al., J. Extracell. Vesicles 13, 12403 (2024). https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.12403
Y. Jia and et al., J. Nanobiotechnol. 22, 346 (2024). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02571-9
C. Zhang and et al., Acta Biomaterialia 169, 422 (2023). https://linkinghub.elsevier.com/retrieve/pii/S174270612300483X
S. Lee and et al., Int. J. Nanomedicine 19, 4893 (2024). https://www.dovepress.com/hyaluronic-acid-bilirubin-nanoparticles-as-a-tumor-microenvironment-re-peer-reviewed-fulltext-article-IJN
S. Çitoğlu and et al., Nanomedicine 16, 925 (2021). https://www.tandfonline.com/doi/full/10.2217/nnm-2020-0467
M. Marquez-Chin and et al., Biomed. Eng. Online 23, 10 (2024). https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-024-01200-8
J. Zhang and et al., J. Nanobiotechnol. 22, 144 (2024). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02405-8
D. Guha and et al., Viruses 16, 72 (2024). https://www.mdpi.com/1999-4915/16/1/72
T. Nazia and et al., Appl. Microbiol. Biotechnol. 108, 203 (2024). https://link.springer.com/article/10.1007/s00253-024-13050-4
E. Wen and et al., J. Nanobiotechnol. 22, 148 (2024). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02439-y
A. S. Piotrowski-Daspit and et al., Nat. Commun. 15, 4247 (2024). https://www.nature.com/articles/s41467-024-48442-7
T. Sun and et al., Anal. Chim. Acta 1304, 342518 (2024). https://www.sciencedirect.com/science/article/abs/pii/S0003267024003192?via%3Dihub
Z. Huang and et al., Nanomedicine 19, 1525 (2024). https://www.tandfonline.com/doi/full/10.1080/17435889.2024.2363743
F. Han and et al., J. Nanobiotechnol. 21, 113 (2023). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-023-01861-y
M. Boushra and et al., J. Drug Deliv. Sci. Technol. 49, 632 (2019). https://linkinghub.elsevier.com/retrieve/pii/S1773224718307809
C. Yang and et al., Heliyon 10, e22802 (2024). https://linkinghub.elsevier.com/retrieve/pii/S2405844023100107
P. Siwaponanan and et al., Clin. Cardiol. 46, 1326 (2023). https://onlinelibrary.wiley.com/doi/10.1002/clc.24115
N. J. Hunt and et al., Adv. Drug. Deliv. Rev. 190, 114537 (2022). https://www.sciencedirect.com/science/article/pii/S0169409X22004276?via%3Dihub
P. Yang, Y. Huang, and et al., J. Ethnopharmacol. 318, 116928 (2024). https://linkinghub.elsevier.com/retrieve/pii/S0378874123007961
G. Hosseini Torshizi and et al., Cancer Nanotechnol. 15, 7 (2024). https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-024-00246-6
V. Mohylyuk and et al., AAPS PharmSciTech 21, 3 (2020). https://link.springer.com/article/10.1208/s12249-019-1534-5
C. Ye and et al., Transl.Androl. Urol. 13, 526 (2024). https://tau.amegroups.org/article/view/123696/html
H. Weng and et al., Nat. Commun. 15, 6058 (2024). https://www.nature.com/articles/s41467-024-50312-1
G. Chen, JCPSP 35, 728 (2022). https://jcpsp.pk/article-detail/pceosub2orsub-nanoparticles-effect-on-acute-hemorrhagic-shock-inducedhepatic-stress-injury-in-a-mouse-modelorp
X. Huang and et al., J. Drug Deliv. Sci. Technol. 98, 105823 (2024). https://linkinghub.elsevier.com/retrieve/pii/S1773224724004921
A. Merolla and et al., Nat. Commun. 15, 5609 (2024). https://www.nature.com/articles/s41467-024-49941-3
C. L. Nawijn and et al., Ultrasound Med. Biol. 50, 1099 (2024). https://linkinghub.elsevier.com/retrieve/pii/S0301562924001406
Z. Li and et al., Drug Delivery 28, 700 (2021). https://www.tandfonline.com/doi/full/10.1080/10717544.2021.1909176
M. Yuan and et al., J. Nanobiotechnol. 22, 180 (2024). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02431-6
J. J. Chang and et al., Int. J. Nanomedicine 19, 2395 (2024). https://www.dovepress.com/pioneering-astaxanthin-tumor-cell-membrane-nanoparticles-for-innovativ-peer-reviewed-fulltext-article-IJN
M. N. Barcellona and et al., Adv. Nanobiomed. Res. 4, 2300112 (2024). https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300112
C. Lu and et al., Nat. Commun. 15, 5000 (2024). https://www.nature.com/articles/s41467-024-49409-4
J. M. M. Mohamed and et al., Cancer Nanotechnol. 15 (2024). https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-024-00249-3
A. Bezerra-Souza and et al., Pharmaceutics 11, 353 (2019). https://www.mdpi.com/1999-4923/11/7/353
K. M. Hosny and et al., Drug Delivery 28, 115 (2021). https://www.tandfonline.com/doi/full/10.1080/10717544.2020.1862365
Y. Venzhik and et al., Plants 13, 1261 (2024). https://www.mdpi.com/2223-7747/13/9/1261
A. Bonaccorso and et al., Int. J. Nanomedicine 19, 5619 (2024). https://www.dovepress.com/nose-to-brain-drug-delivery-and-physico-chemical-properties-of-nanosys-peer-reviewed-fulltext-article-IJN
Q. Li and et al., J. Colloid Interface Sci. 655, 634 (2024). https://linkinghub.elsevier.com/retrieve/pii/S0021979723021057
S. R. Pardeshi and et al., J. Drug Deliv. Sci. Technol. 86, 104719 (2023). https://linkinghub.elsevier.com/retrieve/pii/S1773224723005713
H. O. et al., Mol. Ther. Methods Clin. Dev. 32, 101289 (2024). https://www.cell.com/molecular-therapy-family/methods/fulltext/S2329-0501(24)00105-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2329050124001050%3Fshowall%3Dtrue
L. Zhi and et al., J. Nanobiotechnol. 22, 107 (2024). https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-024-02309-7
S. Hua and et al., Biomaterials 268 (2021). https://www.sciencedirect.com/science/article/abs/pii/S014296122030836X
J. Sapienza Passos and et al., Int. J. Pharm. 635, 122681 (2023). https://www.sciencedirect.com/science/article/pii/S0378517323001011
X. Ma and et al., PLOS Negl. Trop. Dis. 18, e0012107 (2024).
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0012107
L. Zhong and et al., Nat. Commun. 15, 5310 (2024). https://www.nature.com/articles/s41467-024-49546-w
J. Feng and et al., Regen. Biomater. 10, rbad036 (2023). https://academic.oup.com/rb/article/doi/10.1093/rb/rbad036/7131094
M. Oveysi and et al., J. Drug Deliv. Sci. Technol. 98, 105776 (2024). https://www.sciencedirect.com/science/article/abs/pii/S1773224724004453
Y. Wang and et al., Nanomedicine 19, 1557 (2024). https://www.tandfonline.com/doi/full/10.1080/17435889.2024.2365127
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.