Published

2025-01-30

SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD

SIMULACIÓN DE PROPAGACIÓN DE ONDAS ELECTROMAGNÉTICAS EN SISTEMAS MULTICAPA A TRAVÉS DEL MÉTODO DE MATRIZ DE TRANSFERENCIA

DOI:

https://doi.org/10.15446/mo.n70.118397

Keywords:

electromagnetic radiation, thin films, matrix, transmittance, propagation (en)
radiación electromagnética, películas delgadas, matriz, transmitancia, propagación (es)

Downloads

Authors

This article analyzes the propagation of electromagnetic waves in multilayer systems using the transfer matrix method (TMM). Some fundamental optical properties, which include transmittance and reflectance, are examined in dielectric materials and photonic crystals; the influence on radiation propagation associated to some system variables, including the number of layers, their thickness, and stratified deposition, is analyzed. Our main results include the identification of transmission and reflection bands, the influence of the system geometry and periodicity on the optical efficiency, and the viability of the TMM, which can be accomplished by comparing our results with experimental data. In addition, sets of optimal configurations of multilayer systems are presented that show how transmittance is maximized within the optical spectrum. These findings highlight the versatility of the TMM in order to design coatings of high transmittance (or reflectance) and advanced photonic devices, which have several applications, including the areas of photovoltaic cells and optical sensors.

Este artículo analiza la propagación de ondas electromagnéticas en sistemas multicapa mediante el método de matriz de transferencia (MMT). Se examinan propiedades ópticas fundamentales, como la transmitancia y la reflectancia, en materiales dieléctricos y cristales fotónicos dieléctricos (CFD), evaluando cómo parámetros como el grosor de las capas, su número y su disposición estratificada afectan la propagación de la radiación. Los resultados principales incluyen la identificación de bandas de transmisión y reflexión, el impacto de las características geométricas y periódicas de las capas en la eficiencia óptica, y la validación del MMT, en comparación con métodos experimentales. Asimismo, se presentan simulaciones que evidencian cómo configuraciones óptimas de sistemas multicapa maximizan la transmitancia dentro del espectro visible. Estos hallazgos subrayan la versatilidad del MMT para el diseño de recubrimientos de alta transmitancia (o reflectancia) y dispositivos fotónicos avanzados, con aplicaciones en celdas fotovoltaicas y sensores ópticos.

References

J. D. Joannopoulos, S. G. Jhonson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton Press, 2008) p. 44. http://ab-initio.mit.edu/book/

A. Gubaydullin, K. Ivanov, V. Nikolaev, and M. Kaliteevski, Semiconductors 51, 947 (2017). https://www.scopus.com/record/display.uri?eid=2-s2.0-85021625156&doi=10.1134%2fS1063782617070120&origin=inward&txGid=dab8f502d0b98b3f881cb039d7204fae

J. Claudon and J.-M. Gérard, Quantum Photonics , 15 (2024). https://www.sciencedirect.com/science/article/abs/pii/B9780323983785000076?via%3Dihub

M. Butt, S. Khonina, and N. Kazanskiy, Opt. Laser Technol. 142, 107265 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0030399221003534?via%3Dihub

W. G. Daniel and G. N. Malheiros-Silveira, Opt. Laser Technol. 181, 111886 (2025).

https://www.sciencedirect.com/science/article/abs/pii/S0030399224013446?via%3Dihub

H. Zhang, D. Wang, M. Gong, and D. Zhao, Opt. Commun. 237, 179 (2004). https://www.sciencedirect.com/science/article/abs/pii/S003040180400361X?via%3Dihub

P. Jindal, M. Abou Houran, D. Goyal, and A. Choudhary, Optik 280, 170794 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0030402623002905?via%3Dihub

L. Cheng, Z. Nianshun, G. Junming, Z. Li, and S.Wang, Optik 277, 170664 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0030402623001602?via%3Dihub

Z.-Y. Li, STAM 6, 837 (2005). Z.-Y. Li, STAM 6, 837 (2005). https://www.tandfonline.com/doi/abs/10.1016/j.stam.2005.06.013

J. Pendry, J. Mod. Opt. 41, 209 (1994). https://www.tandfonline.com/doi/abs/10.1080/09500349414550281

I. Molina de la Peña, M. Calvo, and R. Alvarez-Estrada, Appl. Math. Model. 101, 694 (2022). https://www.sciencedirect.com/science/article/pii/S0307904X21004297?via%3Dihub

P. Markos and C. M. Soukoulis, Wave propagation: From electrons to photonic crystals and left-handed materials (Princeton University Press, 2008). https://www.scopus.com/record/display.uri?eid=2-s2.0-84883951445&origin=inward&txGid=f8e9bf0817b2500a405d7a1ead7b58d6

J. H. Vargas, R. E. Castiblanco, and J. Morales, MOMENTO 54, 40 (2017). https://revistas.unal.edu.co/index.php/momento/article/view/62430

Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, Solid State Commun. 139, 328 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0038109806005564?via%3Dihub

J. Torres-Guzmán, A. Díaz-De-Anda, and J. Arriaga, J. Phys. A : Math. Theor. 57, 205201 (2024). https://iopscience.iop.org/article/10.1088/1751-8121/ad4077

L. L. Sánchez-Soto, J. J. Monzón, and et al., Physics Reports 513, 191 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0370157311002560?via%3Dihub

L. L. Missoni, G. P. Ortiz, and et al., Optical Materials 109, 110012 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0925346720303566?via%3Dihub

N. V. Velson, H. Zobeiri, and X. Wang, Optics Express 28, 35272 (2020). https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-23-35272&id=442448

S. Kawata, Equations for Electromagnetic Field (Springer, Singapore, 2023) pp. 59–70. https://link.springer.com/chapter/10.1007/978-981-99-1137-0_4

H. Jiang, Z. Cai, and et al., Mech. Adv. Mater. Struct. 29, 4902 (2022). https://www.tandfonline.com/doi/full/10.1080/15376494.2021.1942598

M. Rezaee, A. A. Taheri, and M. Jafari, ICHMT 119, 104969 (2020). https://www.tandfonline.com/doi/full/10.1080/15376494.2021.1942598

A. M. Michalik and F. Marsiglio, Am. J. Phys. 91, 102 (2023). https://pubs.aip.org/aapt/ajp/article-abstract/91/2/102/2872511/A-wave-packet-approach-to-resonant-scattering?redirectedFrom=fulltext

R. Castiblanco, J. Vargas, and et al., J. Phys.: Conf. Ser. 480, 012025 (2014). https://iopscience.iop.org/article/10.1088/1742-6596/480/1/012025

R. Swanepoel, J. Phys. E: Sci. Instr. 16, 1214 (1983). https://www.scopus.com/record/display.uri?eid=2-s2.0-0020940620&doi=10.1088%2f0022-3735%2f16%2f12%2f023&origin=inward&txGid=cb8913bd6e4be559dd6d522cf954e690

E. Shaaban, I. Yahia, and E. El-Metwally, A. Phys. Pol. A 121, 628 (2012). http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z3p12.pdf

Y. He, J. Liu, and et al., Materials and Design 201, 109454 (2021). https://www.sciencedirect.com/science/article/pii/S0264127521000071?via%3Dihub

X. Pi, Q. Li, and et al., Sol. Energy Mater. Sol. Cells 95, 2941 (2011). https://www.sciencedirect.com/science/article/abs/pii/S0927024811003497?via%3Dihub

S. Kou, M. Ouyang, J. Wu, and et al., Optical Materials 156 (2024). https://linkinghub.elsevier.com/retrieve/pii/S0925346724012205

S. Chattopadhyay, Y. Huang, and et al., Mater. Sci. Eng.: R: Rep. 69, 1 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0927796X10000513?via%3Dihub

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, Energy Environ. Sci. 4, 3779 (2011). https://pubs.rsc.org/en/content/articlelanding/2011/ee/c1ee01297e

J. H. Vargas-Beltrán, Método generalizado de la matriz de transferencia (Mgmt); método de las funciones de Green de superficie (Mfgs), relaciones y aplicaciones en sistemas semiconductores periódicos (Tesis de Maestría – Universidad Nacional de Colombia, 2013). https://repositorio.unal.edu.co/handle/unal/21946

A. McGurn, P. Bhattacharya, and et al., Phys. B: Condens. Matter 338, 178 (2003). https://www.sciencedirect.com/science/article/abs/pii/S0921452603004824?via%3Dihub

P. Viktorovitch, E. Drouard, and et al., Comptes Rendus Physique 8, 253 (2007). https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.005/

R. Gadhwal, P. Kaushik, and A. Devi, Crit. Rev. Solid State Mater. Sci. 48, 93 (2022). R. Gadhwal, P. Kaushik, and A. Devi, Crit. Rev. Solid State Mater. Sci. 48, 93 (2022). https://www.tandfonline.com/doi/full/10.1080/10408436.2022.2041394

M. T. Hassan, ACS Photonics 11, 334 (2024). https://pubs.acs.org/doi/10.1021/acsphotonics.3c01584

J. H. Kim, J. Lee, and et al., Nano Letters 23, 11019 (2023). https://pubs.acs.org/doi/10.1021/acs.nanolett.3c03317

R. Zhou, M. L. N. Chen, and et al., IEEE Trans. Antennas Propag. 72, 2058 (2024). https://ieeexplore.ieee.org/document/10341331

J. Cheng, G. Wang, and Y. Wu, Eng. Anal. Bound. Elem. 130, 176 (2021). https://www.sciencedirect.com/science/article/abs/pii/S095579972100148X?via%3Dihub

N. Vanyushkin, A. Gevorgyan, and S. Golik, Optical Materials 127, 112306 (2022). https://www.sciencedirect.com/science/article/abs/pii/S0925346722003408

How to Cite

APA

Castiblanco, R. E., Ferrero, A. and Méndez, G. A. (2025). SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD. MOMENTO, (70), 77–100. https://doi.org/10.15446/mo.n70.118397

ACM

[1]
Castiblanco, R.E., Ferrero, A. and Méndez, G.A. 2025. SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD. MOMENTO. 70 (Jan. 2025), 77–100. DOI:https://doi.org/10.15446/mo.n70.118397.

ACS

(1)
Castiblanco, R. E.; Ferrero, A.; Méndez, G. A. SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD. Momento 2025, 77-100.

ABNT

CASTIBLANCO, R. E.; FERRERO, A.; MÉNDEZ, G. A. SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD. MOMENTO, [S. l.], n. 70, p. 77–100, 2025. DOI: 10.15446/mo.n70.118397. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/118397. Acesso em: 8 mar. 2025.

Chicago

Castiblanco, Raúl E., Alejandro Ferrero, and German A. Méndez. 2025. “SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD”. MOMENTO, no. 70 (January):77-100. https://doi.org/10.15446/mo.n70.118397.

Harvard

Castiblanco, R. E., Ferrero, A. and Méndez, G. A. (2025) “SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD”, MOMENTO, (70), pp. 77–100. doi: 10.15446/mo.n70.118397.

IEEE

[1]
R. E. Castiblanco, A. Ferrero, and G. A. Méndez, “SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD”, Momento, no. 70, pp. 77–100, Jan. 2025.

MLA

Castiblanco, R. E., A. Ferrero, and G. A. Méndez. “SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD”. MOMENTO, no. 70, Jan. 2025, pp. 77-100, doi:10.15446/mo.n70.118397.

Turabian

Castiblanco, Raúl E., Alejandro Ferrero, and German A. Méndez. “SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD”. MOMENTO, no. 70 (January 30, 2025): 77–100. Accessed March 8, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/118397.

Vancouver

1.
Castiblanco RE, Ferrero A, Méndez GA. SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD. Momento [Internet]. 2025 Jan. 30 [cited 2025 Mar. 8];(70):77-100. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/118397

Download Citation