SIMULATIONS OF PROPAGATION OF ELECTROMAGNETIC WAVES IN MULTILAYER SYSTEMS THROUGH THE TRANSFER MATRIX METHOD
SIMULACIÓN DE PROPAGACIÓN DE ONDAS ELECTROMAGNÉTICAS EN SISTEMAS MULTICAPA A TRAVÉS DEL MÉTODO DE MATRIZ DE TRANSFERENCIA
DOI:
https://doi.org/10.15446/mo.n70.118397Keywords:
electromagnetic radiation, thin films, matrix, transmittance, propagation (en)radiación electromagnética, películas delgadas, matriz, transmitancia, propagación (es)
Downloads
This article analyzes the propagation of electromagnetic waves in multilayer systems using the transfer matrix method (TMM). Some fundamental optical properties, which include transmittance and reflectance, are examined in dielectric materials and photonic crystals; the influence on radiation propagation associated to some system variables, including the number of layers, their thickness, and stratified deposition, is analyzed. Our main results include the identification of transmission and reflection bands, the influence of the system geometry and periodicity on the optical efficiency, and the viability of the TMM, which can be accomplished by comparing our results with experimental data. In addition, sets of optimal configurations of multilayer systems are presented that show how transmittance is maximized within the optical spectrum. These findings highlight the versatility of the TMM in order to design coatings of high transmittance (or reflectance) and advanced photonic devices, which have several applications, including the areas of photovoltaic cells and optical sensors.
Este artículo analiza la propagación de ondas electromagnéticas en sistemas multicapa mediante el método de matriz de transferencia (MMT). Se examinan propiedades ópticas fundamentales, como la transmitancia y la reflectancia, en materiales dieléctricos y cristales fotónicos dieléctricos (CFD), evaluando cómo parámetros como el grosor de las capas, su número y su disposición estratificada afectan la propagación de la radiación. Los resultados principales incluyen la identificación de bandas de transmisión y reflexión, el impacto de las características geométricas y periódicas de las capas en la eficiencia óptica, y la validación del MMT, en comparación con métodos experimentales. Asimismo, se presentan simulaciones que evidencian cómo configuraciones óptimas de sistemas multicapa maximizan la transmitancia dentro del espectro visible. Estos hallazgos subrayan la versatilidad del MMT para el diseño de recubrimientos de alta transmitancia (o reflectancia) y dispositivos fotónicos avanzados, con aplicaciones en celdas fotovoltaicas y sensores ópticos.
References
J. D. Joannopoulos, S. G. Jhonson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton Press, 2008) p. 44. http://ab-initio.mit.edu/book/
A. Gubaydullin, K. Ivanov, V. Nikolaev, and M. Kaliteevski, Semiconductors 51, 947 (2017). https://www.scopus.com/record/display.uri?eid=2-s2.0-85021625156&doi=10.1134%2fS1063782617070120&origin=inward&txGid=dab8f502d0b98b3f881cb039d7204fae
J. Claudon and J.-M. Gérard, Quantum Photonics , 15 (2024). https://www.sciencedirect.com/science/article/abs/pii/B9780323983785000076?via%3Dihub
M. Butt, S. Khonina, and N. Kazanskiy, Opt. Laser Technol. 142, 107265 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0030399221003534?via%3Dihub
W. G. Daniel and G. N. Malheiros-Silveira, Opt. Laser Technol. 181, 111886 (2025).
https://www.sciencedirect.com/science/article/abs/pii/S0030399224013446?via%3Dihub
H. Zhang, D. Wang, M. Gong, and D. Zhao, Opt. Commun. 237, 179 (2004). https://www.sciencedirect.com/science/article/abs/pii/S003040180400361X?via%3Dihub
P. Jindal, M. Abou Houran, D. Goyal, and A. Choudhary, Optik 280, 170794 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0030402623002905?via%3Dihub
L. Cheng, Z. Nianshun, G. Junming, Z. Li, and S.Wang, Optik 277, 170664 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0030402623001602?via%3Dihub
Z.-Y. Li, STAM 6, 837 (2005). Z.-Y. Li, STAM 6, 837 (2005). https://www.tandfonline.com/doi/abs/10.1016/j.stam.2005.06.013
J. Pendry, J. Mod. Opt. 41, 209 (1994). https://www.tandfonline.com/doi/abs/10.1080/09500349414550281
I. Molina de la Peña, M. Calvo, and R. Alvarez-Estrada, Appl. Math. Model. 101, 694 (2022). https://www.sciencedirect.com/science/article/pii/S0307904X21004297?via%3Dihub
P. Markos and C. M. Soukoulis, Wave propagation: From electrons to photonic crystals and left-handed materials (Princeton University Press, 2008). https://www.scopus.com/record/display.uri?eid=2-s2.0-84883951445&origin=inward&txGid=f8e9bf0817b2500a405d7a1ead7b58d6
J. H. Vargas, R. E. Castiblanco, and J. Morales, MOMENTO 54, 40 (2017). https://revistas.unal.edu.co/index.php/momento/article/view/62430
Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Ågren, Solid State Commun. 139, 328 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0038109806005564?via%3Dihub
J. Torres-Guzmán, A. Díaz-De-Anda, and J. Arriaga, J. Phys. A : Math. Theor. 57, 205201 (2024). https://iopscience.iop.org/article/10.1088/1751-8121/ad4077
L. L. Sánchez-Soto, J. J. Monzón, and et al., Physics Reports 513, 191 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0370157311002560?via%3Dihub
L. L. Missoni, G. P. Ortiz, and et al., Optical Materials 109, 110012 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0925346720303566?via%3Dihub
N. V. Velson, H. Zobeiri, and X. Wang, Optics Express 28, 35272 (2020). https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-23-35272&id=442448
S. Kawata, Equations for Electromagnetic Field (Springer, Singapore, 2023) pp. 59–70. https://link.springer.com/chapter/10.1007/978-981-99-1137-0_4
H. Jiang, Z. Cai, and et al., Mech. Adv. Mater. Struct. 29, 4902 (2022). https://www.tandfonline.com/doi/full/10.1080/15376494.2021.1942598
M. Rezaee, A. A. Taheri, and M. Jafari, ICHMT 119, 104969 (2020). https://www.tandfonline.com/doi/full/10.1080/15376494.2021.1942598
A. M. Michalik and F. Marsiglio, Am. J. Phys. 91, 102 (2023). https://pubs.aip.org/aapt/ajp/article-abstract/91/2/102/2872511/A-wave-packet-approach-to-resonant-scattering?redirectedFrom=fulltext
R. Castiblanco, J. Vargas, and et al., J. Phys.: Conf. Ser. 480, 012025 (2014). https://iopscience.iop.org/article/10.1088/1742-6596/480/1/012025
R. Swanepoel, J. Phys. E: Sci. Instr. 16, 1214 (1983). https://www.scopus.com/record/display.uri?eid=2-s2.0-0020940620&doi=10.1088%2f0022-3735%2f16%2f12%2f023&origin=inward&txGid=cb8913bd6e4be559dd6d522cf954e690
E. Shaaban, I. Yahia, and E. El-Metwally, A. Phys. Pol. A 121, 628 (2012). http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z3p12.pdf
Y. He, J. Liu, and et al., Materials and Design 201, 109454 (2021). https://www.sciencedirect.com/science/article/pii/S0264127521000071?via%3Dihub
X. Pi, Q. Li, and et al., Sol. Energy Mater. Sol. Cells 95, 2941 (2011). https://www.sciencedirect.com/science/article/abs/pii/S0927024811003497?via%3Dihub
S. Kou, M. Ouyang, J. Wu, and et al., Optical Materials 156 (2024). https://linkinghub.elsevier.com/retrieve/pii/S0925346724012205
S. Chattopadhyay, Y. Huang, and et al., Mater. Sci. Eng.: R: Rep. 69, 1 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0927796X10000513?via%3Dihub
H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, Energy Environ. Sci. 4, 3779 (2011). https://pubs.rsc.org/en/content/articlelanding/2011/ee/c1ee01297e
J. H. Vargas-Beltrán, Método generalizado de la matriz de transferencia (Mgmt); método de las funciones de Green de superficie (Mfgs), relaciones y aplicaciones en sistemas semiconductores periódicos (Tesis de Maestría – Universidad Nacional de Colombia, 2013). https://repositorio.unal.edu.co/handle/unal/21946
A. McGurn, P. Bhattacharya, and et al., Phys. B: Condens. Matter 338, 178 (2003). https://www.sciencedirect.com/science/article/abs/pii/S0921452603004824?via%3Dihub
P. Viktorovitch, E. Drouard, and et al., Comptes Rendus Physique 8, 253 (2007). https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.005/
R. Gadhwal, P. Kaushik, and A. Devi, Crit. Rev. Solid State Mater. Sci. 48, 93 (2022). R. Gadhwal, P. Kaushik, and A. Devi, Crit. Rev. Solid State Mater. Sci. 48, 93 (2022). https://www.tandfonline.com/doi/full/10.1080/10408436.2022.2041394
M. T. Hassan, ACS Photonics 11, 334 (2024). https://pubs.acs.org/doi/10.1021/acsphotonics.3c01584
J. H. Kim, J. Lee, and et al., Nano Letters 23, 11019 (2023). https://pubs.acs.org/doi/10.1021/acs.nanolett.3c03317
R. Zhou, M. L. N. Chen, and et al., IEEE Trans. Antennas Propag. 72, 2058 (2024). https://ieeexplore.ieee.org/document/10341331
J. Cheng, G. Wang, and Y. Wu, Eng. Anal. Bound. Elem. 130, 176 (2021). https://www.sciencedirect.com/science/article/abs/pii/S095579972100148X?via%3Dihub
N. Vanyushkin, A. Gevorgyan, and S. Golik, Optical Materials 127, 112306 (2022). https://www.sciencedirect.com/science/article/abs/pii/S0925346722003408
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.