Published

2025-01-30

ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024

INTELIGENCIA ARTIFICIAL CON REDES NEURONALES PREMIOS NOBEL DE FÍSICA Y QUÍMICA 2024

DOI:

https://doi.org/10.15446/mo.n70.118564

Keywords:

Hopfield network, synaptic weight adjustment, deep learning, computational protein design, AlphaFold (en)
red de Hopfield, ajuste de pesos sinápticos, aprendizaje profundo, diseño computacional de proteínas, AlphaFold (es)

Downloads

Authors

  • Jorge E. Mahecha-Gómez Universidad de Antioquia UdeA

John Joseph Hopfield began his career studying excitons in condensed matter physics, but his most important contributions were in the physics of computation and information, including his 1982 work on neural networks. Geoffrey Hinton, known as the “godfather” of artificial intelligence, laid the foundations for deep neural networks and developed the “backpropagation” method in 1986. These advances, along with Hopfield networks and the “Boltzmann machine”, constitute the beginning of artificial intelligence.

David Baker is a pioneer in the design and prediction of three-dimensional protein structures, while Demis Hassabis has applied artificial intelligence to neuroscience. John Michael Jumper has investigated the use of AI to simulate protein folding and dynamics.

Hopfield and Hinton received the 2024 Nobel Prize in Physics, and Baker, Hassabis and Jumper received the Nobel Prize in Chemistry, sparking debates on interdisciplinarity and academic degrees in the sciences.

John Joseph Hopfield inició su carrera estudiando excitones en física de la materia condensada, pero sus aportes más relevantes fueron en física de la computación e información, destacando su trabajo de 1982 sobre redes neuronales. Geoffrey Hinton, conocido como el “padrino” de la inteligencia artificial, sentó las bases de las redes neuronales profundas y desarrolló el método de “backpropagation” en 1986. Estos avances, junto con las redes de Hopfield y la “máquina de Boltzmann”, constituyen el inicio de la inteligencia artificial.

David Baker es pionero en el diseño y predicción de estructuras tridimensionales de proteínas, mientras que Demis Hassabis ha aplicado la inteligencia artificial a la neurociencia. John Michael Jumper ha investigado el uso de la IA para simular el plegamiento y dinámica de proteínas.

Hopfield y Hinton recibieron el Nobel de Física 2024, y Baker, Hassabis y Jumper el de Química, generando debates sobre la interdisciplinariedad y los títulos académicos en las ciencias.

References

W. S. McCulloch and W. Pitts, Bulletin of Mathematical Biophysics 5, 115 (1943). https://link.springer.com/article/10.1007/BF02478259

B. Tirozzi, Modelli matematici di reti neurali, Sistemi di elaborazione cognitiva (CEDAM, 1995). https://books.google.com.co/books?id=DRrYAAAACAAJ

The Royal Swedish Academy of Sciences, Scientific Background to the Nobel Prize in Physics 2024 (2024). https://www.nobelprize.org/uploads/2024/11/advanced-physicsprize2024-3.pdf

The Royal Swedish Academy of Sciences, Scientific Background to the Nobel Prize in Chemistry 2024 (2024). https://www.nobelprize.org/uploads/2024/10/advanced-chemistryprize2024.pdf

J. J. Hopfield, Proceedings of the National Academy of Sciences of the United States of America 79, 2254 (1982). https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, Cognitive science 9, 147 (1985). https://www.semanticscholar.org/paper/A-Learning-Algorithm-for-Boltzmann-Machines-Ackley-Hinton/a0d16f0e99f7ce5e6fb70b1a68c685e9ad610657

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533 (1986). https://www.nature.com/articles/323533a0

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, K. L., and I. Polosukhin, in Advances in Neural Information Processing Systems (2017). https://arxiv.org/abs/1706.03762

How to Cite

APA

Mahecha-Gómez, J. E. (2025). ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024. MOMENTO, (70), I - XXI. https://doi.org/10.15446/mo.n70.118564

ACM

[1]
Mahecha-Gómez, J.E. 2025. ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024. MOMENTO. 70 (Jan. 2025), I - XXI. DOI:https://doi.org/10.15446/mo.n70.118564.

ACS

(1)
Mahecha-Gómez, J. E. ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024. Momento 2025, I - XXI.

ABNT

MAHECHA-GÓMEZ, J. E. ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024. MOMENTO, [S. l.], n. 70, p. I - XXI, 2025. DOI: 10.15446/mo.n70.118564. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/118564. Acesso em: 8 mar. 2025.

Chicago

Mahecha-Gómez, Jorge E. 2025. “ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024”. MOMENTO, no. 70 (January):I - XXI. https://doi.org/10.15446/mo.n70.118564.

Harvard

Mahecha-Gómez, J. E. (2025) “ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024”, MOMENTO, (70), p. I - XXI. doi: 10.15446/mo.n70.118564.

IEEE

[1]
J. E. Mahecha-Gómez, “ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024”, Momento, no. 70, p. I - XXI, Jan. 2025.

MLA

Mahecha-Gómez, J. E. “ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024”. MOMENTO, no. 70, Jan. 2025, p. I - XXI, doi:10.15446/mo.n70.118564.

Turabian

Mahecha-Gómez, Jorge E. “ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024”. MOMENTO, no. 70 (January 30, 2025): I - XXI. Accessed March 8, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/118564.

Vancouver

1.
Mahecha-Gómez JE. ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024. Momento [Internet]. 2025 Jan. 30 [cited 2025 Mar. 8];(70):I - XXI. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/118564

Download Citation