PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER
PREPARACIÓN DE NANOESTRUCTURAS DE COBALTO UTILIZANDO UN LÁSER Nd:YAG PULSADO
DOI:
https://doi.org/10.15446/mo.n72.118854Keywords:
cobalt nanoparticles, laser ablation, Cobalt nanoparticles, Laser ablation, physical properties of nanostructures (en)nanopartículas de cobalto, ablación láser, propiedades físicas de las nanoestructuras (es)
Downloads
This study presents the preparation and characterization of cobalt nanoscale particles, focusing on several of their physical properties. Cobalt nanostructures were synthesized using the Pulsed Laser Ablation in Liquid (PLAL) method, employing a Q-switched Nd: laser with a fundamental wavelength of 1064 nm, a pulse duration of 10 ns, and a repetition rate of 1 Hz. Laser ablation energies of 200 and 400 mJ, along with varying pulse counts of 100, 200, and 300 per energy setting, were used for synthesis. The measured physical properties include optical absorbance, absorption coefficient, energy gap, refractive index, and extinction coefficient. Three energy gap values, 1.53, 2.36, and 3.53 eV, were observed, showing a slight increase with the total number of pulses, with minimal influence from the pulse energy. Other optical parameters, including refractive index, absorption coefficient, extinction coefficient, and optical conductivity, exhibited an increasing trend with a higher total number of pulses.
Este estudio presenta la preparación y caracterización de nanopartículas de cobalto, centrándose en varias de sus propiedades físicas. Las nanoestructuras de cobalto se sintetizaron mediante la técnica de ablación láser pulsada en líquido (PLAL, por sus siglas en inglés), empleando un láser Nd:YAG conmutado en Q, con una longitud de onda fundamental de 1064 nm, una duración de pulso de 10 ns y una frecuencia de repetición de 1 Hz. Se emplearon energías de ablación láser de 200 y 400 mJ, junto con diferentes números de pulsos (100, 200 y 300) para cada valor de energía. Las propiedades físicas medidas incluyen la absorbancia óptica, el coeficiente de absorción, la banda prohibida, el índice de refracción y el coeficiente de extinción. Se observaron tres valores de energía de banda (1,53; 2,36 y 3,53 eV), los cuales mostraron un ligero incremento con el número total de pulsos y una influencia mínima de la energía de ablación. Otros parámetros ópticos, como el índice de refracción, el coeficiente de absorción, el coeficiente de extinción y la conductividad óptica, mostraron una tendencia creciente al aumentar el número total de pulsos.
References
A. Haleem, M. Javaid, and et al., Glob. Health J. 7, 70 (2023). https://www.sciencedirect.com/science/article/pii/S2414644723000337?via%3Dihub
S. Anjum, S. Ishaque, and et al., Pharmaceuticals 14, 707 (2021). https://www.mdpi.com/1424-8247/14/8/707
K. Lozovoy, Int. J. Mol. Sci. 25, 9931 (2024). https://www.mdpi.com/1422-0067/25/18/9931
X. J. Liang, A. Kumar, and et al., J. Nanomater. 2012, 921897 (2012). https://onlinelibrary.wiley.com/doi/10.1155/2012/921897
K. McNamara and S. A. M. Tofail, Adv. Phys. 2, 54 (2017). https://www.tandfonline.com/doi/full/10.1080/23746149.2016.1254570
F. Eker, H. Duman, E. Akdaşçi, and et al., Molecules 29, 3482 (2024). https://www.mdpi.com/1420-3049/29/15/3482
Payal and P. Pandey, Recent Pat. Nanotechnol. 16, 45 (2021). https://www.eurekaselect.com/article/113469
A. Aseev, Her. Russ. Acad. Sci. 76, 318 (2006). https://link.springer.com/article/10.1134/S1019331606040022
M. Bohr, IEEE transactions on Nanotechnology 1, 56 (2002). https://ieeexplore.ieee.org/document/1005426
D. S. Grewal, J. Biosens. Renew. Sources 1, 114 (2022). https://lupinepublishers.com/biosensors-renewable-sources/pdf/JBRS.MS.ID.000119.pdf
L. Wang, M. P. R. Teles, and et al., Sustain. Energy Technol.Assess. 54, 102864 (2022). https://www.sciencedirect.com/science/article/pii/S2213138822009122?via%3Dihub
V. K. Sethi, M. Pandey, and P. Shukla, Int. J. Chem. Eng. Appl. 2, 77 (2011). https://www.ijcea.org/show-30-349-1.html
M. A. Al-Jubbori, N. A. Al-Jubbori, and et al., J. Educ. Sci. 34, 18 (2025). https://edusj.uomosul.edu.iq/index.php/edusj/article/view/49325
N. Dewan, J. Kamboj, and J. Kesari, Int. Res. J. Eng. Technol. 8, 2204 (2021). https://www.irjet.net/archives/V8/i7/IRJET-V8I7386.pdf
U. Banin, N. Waiskopf, and et al., Nanotechnology 32, 042003 (2020). https://iopscience.iop.org/article/10.1088/1361-6528/abbce8
M. A. Al-Jubbori and N. A. Al-Jubbori, J. Educ. Sci. 31, 1 (2022). https://ojs.uomosul.edu.iq/index.php/edusj/article/view/42616
B. L. Dinesha, H. Sharanagouda, and et al., Int. J. Curr. Microbiol. Appl. Sci. 6, 4868 (2017). https://www.ijcmas.com/abstractview.php?ID=4889&vol=6-10-2017&SNo=455
I. Gehrke, A. Geiser, and A. Somborn-Schulz, Nanotechnol. Sci. Appl. 8, 1 (2015). https://www.dovepress.com/innovations-in-nanotechnology-for-water-treatment-peer-reviewed-fulltext-article-NSA
Nishu and S. Kumar, Hybrid Adv. 3, 100044 (2023). https://www.sciencedirect.com/science/article/pii/S2773207X23000271?via%3Dihub
I. Tlili and T. A. Alkanhal, J. Water Reuse Desal. 9, 232 (2019). https://iwaponline.com/jwrd/article/9/3/232/65579/Nanotechnology-for-water-purification-electrospun
A. Bhatnagar, M. Tripathi, and et al., in Nanotechnol. Electron. Appl. (Springer, 2022) pp. 29–48. https://link.springer.com/chapter/10.1007/978-981-16-6022-1_2
S.-J. Cho, M.-J. Uddin, and P. Alaboina, in Emerging Nanotechnologies in Rechargeable Energy Storage Systems (Elsevier, 2017) pp. 83–129. https://www.sciencedirect.com/science/chapter/edited-volume/abs/pii/B9780323429771000030?via%3Dihub
M. Al-Jubbori and D. Al-Jubbori, J. Educ. Sci. 31, 105 (2022). https://ojs.uomosul.edu.iq/index.php/edusj/article/view/42620
P. Kumar, H. K. Channi, and et al., Int. J. Low-Carbon Technol. 19, 747 (2024). https://academic.oup.com/ijlct/article/doi/10.1093/ijlct/ctae029/7635487
K. Wong and S. Dia, J. Energy Resour. Technol. 139, 014001 (2017). https://asmedigitalcollection.asme.org/energyresources/article-abstract/139/1/014001/384996/Nanotechnology-in-Batteries?redirectedFrom=fulltext
V. Gupta, S. Mohapatra, and et al., Gels 8, 173 (2022). https://www.mdpi.com/2310-2861/8/3/173
L. Salvioni, L. Morelli, and et al., Adv. Colloid Interface Sci. 293, 102437 (2021). https://www.sciencedirect.com/science/article/pii/S0001868621000786?via%3Dihub
D. E. Effiong, T. O. Uwah, and et al., Adv. Nanoparticles 9, 1 (2020). https://www.scirp.org/pdf/anp_2019121612033764.pdf
C. Cardoza, V. Nagtode, and et al., Health Sci. Rev. 4, 100051 (2022). https://www.sciencedirect.com/science/article/pii/S277263202200040X?via%3Dihub
R. Yadwade, S. Gharpure, and et al., Nano Express 2, 022003 (2021). https://iopscience.iop.org/article/10.1088/2632-959X/abf46b
H. A. Yousef, H. M. Fahmy, and et al., Int. J. Trop. Insect Sci. 43, 1387–1399 (2023). https://link.springer.com/article/10.1007/s42690-023-01053-z
C. An, C. Sun, and et al., J. Nanobiotechnol. 20, 11 (2022). https://link.springer.com/article/10.1186/s12951-021-01214-7
M. Chaud, E. B. Souto, and et al., Toxics 9, 131 (2021). https://www.mdpi.com/2305-6304/9/6/131
K. Harini, K. Girigoswami, and et al., J. Plant Protect. Res. 63, 137 (2023). https://doi.org/https://doi.org/10.24425/jppr.2023.145758
B. Huang, F. Chen, and et al., Nanomaterials 8, 102 (2018). https://www.mdpi.com/2079-4991/8/2/102
M. A. Islam, M. Zuba, and et al., Nanotechnology 29, 075403 (2018). https://iopscience.iop.org/article/10.1088/1361-6528/aaa231
H. Chen, W. Wang, and et al., Nanomaterials 12, 2042 (2022). https://www.mdpi.com/2079-4991/12/12/2042
S. Amiri, H. Shokrollahi, and et al., Mater. Sci. Eng. C 33, 1 (2013). https://www.sciencedirect.com/science/article/pii/S0928493112004353?via%3Dihub
D. Piché and et al., ACS Appl. Mater. Interfaces 11, 6724 (2019). https://pubs.acs.org/doi/10.1021/acsami.8b17162
Z. Liang, D. Shen, and et al., Nano Res. 17, 2234 (2024). https://link.springer.com/article/10.1007/s12274-023-6219-4
X. Peng, X. Jin, and et al., J. Catal. 398, 54 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0021951721001470?via%3Dihub
K. Ajaj, M. Al-Jubbori, and et al., J. Laser Appl. 35, 042055 (2023). https://pubs.aip.org/lia/jla/article-abstract/35/4/042055/2918561/Influence-of-ultraviolet-irradiation-on-the?redirectedFrom=fulltext
K. Ajaj, A. M. Ali, and et al., Nanosistemi, Nanomateriali, Nanotehnologii 22, 209 (2024). https://doi.org/https://doi.org/10.15407/nnn.22.01.209
K. Ajaj, M. Al-Jubbori, and et al., Radiat. Phys. Chem. 216, 111384 (2024). https://www.sciencedirect.com/science/article/abs/pii/S0969806X23006308?via%3Dihub
F. A. Mohammed, K. Ajaj, and et al., Russ. Phys. J. 67, 1015 (2024). https://link.springer.com/article/10.1007/s11182-024-03211-3
M. A. Al-Jubbori, O. Ayed, and K. Ajaj, Radiat. Phys. Chem. 226, 111358 (2025). https://www.sciencedirect.com/science/article/abs/pii/S0969806X24006820
K. Ajaj, M. Al-Jubbori, and et al., Nanosistemi, Nanomateriali, Nanotehnologii 22, 557 (2024). https://doi.org/https://doi.org/10.15407/nnn.22.03.557
A. H. A. Darwesh, P. A. Mohammed, and et al., Coatings 13, 578 (2023). https://www.mdpi.com/2079-6412/13/3/578
A. Vennela, D. Mangalaraj, and et al., Int J Electrochem Sci. 14, 3535 (2019). https://www.sciencedirect.com/science/article/pii/S1452398123019569?via%3Dihub
A. Vennela, D. Mangalaraj, and et.al, Int. J. Electrochem. Sci. 14, 3535 (2019). https://www.sciencedirect.com/science/article/pii/S1452398123019569
R. Bhargava, S. Khan, and et al., in AIP Confe. Proc., Vol. 1953 (2018) p. 030034. https://pubs.aip.org/aip/acp/article-abstract/1953/1/030034/857939/Investigation-of-structural-optical-and-electrical?redirectedFrom=fulltext
X. Zhu, J.Wang, and et al., Opt. Mater. Express 2, 103 (2012). https://opg.optica.org/ome/fulltext.cfm?uri=ome-2-1-103
R. Bhargava, S. Khan, and et al., AIP Conf. Proc. 1953, 030034 (2018). https://pubs.aip.org/aip/acp/article-abstract/1953/1/030034/857939/Investigation-of-structural-optical-and-electrical?redirectedFrom=fulltext
M. Yarestani, A. D. Khalaji, and et al., J. Sci., Islam. Repub. Iran 25, 339 (2014). https://jsciences.ut.ac.ir/article_52619.html
D. Letsholathebe, F. Thema, and et al., Mater. Today: Proc. 36, 499 (2021). https://www.sciencedirect.com/science/article/abs/pii/S2214785320337664?via%3Dihub
G. Hitkari, S. Sandhya, and et al., J. Mater. Sci. Eng. 7, 419 (2018). https://www.hilarispublisher.com/open-access/synthesis-of-chromium-doped-cobalt-oxide-crco3o4-nanoparticles-bycoprecipitation-method-and-enhanced-photocatalytic-properties-in-2169-0022-1000419.pdf
L. Qiao, H. Y. Xiao, and et al., J. Mater. Chem. C 1, 4628 (2013). https://pubs.rsc.org/en/content/articlelanding/2013/tc/c3tc30861h
I. Saini, J. Rozra, and et al., Mater. Chem. Phys. 139, 802 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0254058413001740?via%3Dihub
M. Rashidian and D. Dorranian, J. Theor. Appl. Phys. 8, 121 (2014). https://link.springer.com/article/10.1007/s40094-014-0121-0
S. A. Hamdan and I. M. Ali, Iraqi J. Phys. 17, 77 (2019). https://iasj.rdd.edu.iq/journals/uploads/2024/12/25/f4afd6964782966b9077738e4ffcb9aa.pdf
H. Yamamoto, S. Tanaka, and et al., J. Ceram. Soc. Jpn., Suppl. 112, S876 (2004). https://www.jstage.jst.go.jp/article/jcersjsuppl/112/0/112_0_S876/_article
F. K. Sabir, E. T. Bekele, and et al., J. Nanostruc 11, 577 (2021). https://jns.kashanu.ac.ir/article_111887.html
S. Farhadi, J. Safabakhsh, and et al., J. Nanostruct. Chem. 3, 69 (2013). https://oiccpress.com/jnsc/article/view/10778
E. Delnavaz and K. Asadpour-Zeynali, Results Chem. 7, 101321 (2024). https://www.sciencedirect.com/science/article/pii/S2211715624000171?via%3Dihub
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.







