Published

2026-01-20

PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER

PREPARACIÓN DE NANOESTRUCTURAS DE COBALTO UTILIZANDO UN LÁSER Nd:YAG PULSADO

DOI:

https://doi.org/10.15446/mo.n72.118854

Keywords:

cobalt nanoparticles, laser ablation, Cobalt nanoparticles, Laser ablation, physical properties of nanostructures (en)
nanopartículas de cobalto, ablación láser, propiedades físicas de las nanoestructuras (es)

Downloads

Authors

  • Warkaa Omar Abed Al-Rashidy Ninevah University
  • Khalaf Ajaj Ministry of Education https://orcid.org/0009-0004-2436-1895
  • Mushtaq Abed Al-Jubbori University of Mosul

This study presents the preparation and characterization of cobalt nanoscale particles, focusing on several of their physical properties. Cobalt nanostructures were synthesized using the Pulsed Laser Ablation in Liquid (PLAL) method, employing a Q-switched Nd: laser with a fundamental wavelength of 1064 nm, a pulse duration of 10 ns, and a repetition rate of 1 Hz. Laser ablation energies of 200 and 400 mJ, along with varying pulse counts of 100, 200, and 300 per energy setting, were used for synthesis. The measured physical properties include optical absorbance, absorption coefficient, energy gap, refractive index, and extinction coefficient. Three energy gap values, 1.53, 2.36, and 3.53 eV, were observed, showing a slight increase with the total number of pulses, with minimal influence from the pulse energy. Other optical parameters, including refractive index, absorption coefficient, extinction coefficient, and optical conductivity, exhibited an increasing trend with a higher total number of pulses.

Este estudio presenta la preparación y caracterización de nanopartículas de cobalto, centrándose en varias de sus propiedades físicas. Las nanoestructuras de cobalto se sintetizaron mediante la técnica de ablación láser pulsada en líquido (PLAL, por sus siglas en inglés), empleando un láser Nd:YAG conmutado en Q, con una longitud de onda fundamental de 1064 nm, una duración de pulso de 10 ns y una frecuencia de repetición de 1 Hz. Se emplearon energías de ablación láser de 200 y 400 mJ, junto con diferentes números de pulsos (100, 200 y 300) para cada valor de energía. Las propiedades físicas medidas incluyen la absorbancia óptica, el coeficiente de absorción, la banda prohibida, el índice de refracción y el coeficiente de extinción. Se observaron tres valores de energía de banda (1,53; 2,36 y 3,53 eV), los cuales mostraron un ligero incremento con el número total de pulsos y una influencia mínima de la energía de ablación. Otros parámetros ópticos, como el índice de refracción, el coeficiente de absorción, el coeficiente de extinción y la conductividad óptica, mostraron una tendencia creciente al aumentar el número total de pulsos.

References

A. Haleem, M. Javaid, and et al., Glob. Health J. 7, 70 (2023). https://www.sciencedirect.com/science/article/pii/S2414644723000337?via%3Dihub

S. Anjum, S. Ishaque, and et al., Pharmaceuticals 14, 707 (2021). https://www.mdpi.com/1424-8247/14/8/707

K. Lozovoy, Int. J. Mol. Sci. 25, 9931 (2024). https://www.mdpi.com/1422-0067/25/18/9931

X. J. Liang, A. Kumar, and et al., J. Nanomater. 2012, 921897 (2012). https://onlinelibrary.wiley.com/doi/10.1155/2012/921897

K. McNamara and S. A. M. Tofail, Adv. Phys. 2, 54 (2017). https://www.tandfonline.com/doi/full/10.1080/23746149.2016.1254570

F. Eker, H. Duman, E. Akdaşçi, and et al., Molecules 29, 3482 (2024). https://www.mdpi.com/1420-3049/29/15/3482

Payal and P. Pandey, Recent Pat. Nanotechnol. 16, 45 (2021). https://www.eurekaselect.com/article/113469

A. Aseev, Her. Russ. Acad. Sci. 76, 318 (2006). https://link.springer.com/article/10.1134/S1019331606040022

M. Bohr, IEEE transactions on Nanotechnology 1, 56 (2002). https://ieeexplore.ieee.org/document/1005426

D. S. Grewal, J. Biosens. Renew. Sources 1, 114 (2022). https://lupinepublishers.com/biosensors-renewable-sources/pdf/JBRS.MS.ID.000119.pdf

L. Wang, M. P. R. Teles, and et al., Sustain. Energy Technol.Assess. 54, 102864 (2022). https://www.sciencedirect.com/science/article/pii/S2213138822009122?via%3Dihub

V. K. Sethi, M. Pandey, and P. Shukla, Int. J. Chem. Eng. Appl. 2, 77 (2011). https://www.ijcea.org/show-30-349-1.html

M. A. Al-Jubbori, N. A. Al-Jubbori, and et al., J. Educ. Sci. 34, 18 (2025). https://edusj.uomosul.edu.iq/index.php/edusj/article/view/49325

N. Dewan, J. Kamboj, and J. Kesari, Int. Res. J. Eng. Technol. 8, 2204 (2021). https://www.irjet.net/archives/V8/i7/IRJET-V8I7386.pdf

U. Banin, N. Waiskopf, and et al., Nanotechnology 32, 042003 (2020). https://iopscience.iop.org/article/10.1088/1361-6528/abbce8

M. A. Al-Jubbori and N. A. Al-Jubbori, J. Educ. Sci. 31, 1 (2022). https://ojs.uomosul.edu.iq/index.php/edusj/article/view/42616

B. L. Dinesha, H. Sharanagouda, and et al., Int. J. Curr. Microbiol. Appl. Sci. 6, 4868 (2017). https://www.ijcmas.com/abstractview.php?ID=4889&vol=6-10-2017&SNo=455

I. Gehrke, A. Geiser, and A. Somborn-Schulz, Nanotechnol. Sci. Appl. 8, 1 (2015). https://www.dovepress.com/innovations-in-nanotechnology-for-water-treatment-peer-reviewed-fulltext-article-NSA

Nishu and S. Kumar, Hybrid Adv. 3, 100044 (2023). https://www.sciencedirect.com/science/article/pii/S2773207X23000271?via%3Dihub

I. Tlili and T. A. Alkanhal, J. Water Reuse Desal. 9, 232 (2019). https://iwaponline.com/jwrd/article/9/3/232/65579/Nanotechnology-for-water-purification-electrospun

A. Bhatnagar, M. Tripathi, and et al., in Nanotechnol. Electron. Appl. (Springer, 2022) pp. 29–48. https://link.springer.com/chapter/10.1007/978-981-16-6022-1_2

S.-J. Cho, M.-J. Uddin, and P. Alaboina, in Emerging Nanotechnologies in Rechargeable Energy Storage Systems (Elsevier, 2017) pp. 83–129. https://www.sciencedirect.com/science/chapter/edited-volume/abs/pii/B9780323429771000030?via%3Dihub

M. Al-Jubbori and D. Al-Jubbori, J. Educ. Sci. 31, 105 (2022). https://ojs.uomosul.edu.iq/index.php/edusj/article/view/42620

P. Kumar, H. K. Channi, and et al., Int. J. Low-Carbon Technol. 19, 747 (2024). https://academic.oup.com/ijlct/article/doi/10.1093/ijlct/ctae029/7635487

K. Wong and S. Dia, J. Energy Resour. Technol. 139, 014001 (2017). https://asmedigitalcollection.asme.org/energyresources/article-abstract/139/1/014001/384996/Nanotechnology-in-Batteries?redirectedFrom=fulltext

V. Gupta, S. Mohapatra, and et al., Gels 8, 173 (2022). https://www.mdpi.com/2310-2861/8/3/173

L. Salvioni, L. Morelli, and et al., Adv. Colloid Interface Sci. 293, 102437 (2021). https://www.sciencedirect.com/science/article/pii/S0001868621000786?via%3Dihub

D. E. Effiong, T. O. Uwah, and et al., Adv. Nanoparticles 9, 1 (2020). https://www.scirp.org/pdf/anp_2019121612033764.pdf

C. Cardoza, V. Nagtode, and et al., Health Sci. Rev. 4, 100051 (2022). https://www.sciencedirect.com/science/article/pii/S277263202200040X?via%3Dihub

R. Yadwade, S. Gharpure, and et al., Nano Express 2, 022003 (2021). https://iopscience.iop.org/article/10.1088/2632-959X/abf46b

H. A. Yousef, H. M. Fahmy, and et al., Int. J. Trop. Insect Sci. 43, 1387–1399 (2023). https://link.springer.com/article/10.1007/s42690-023-01053-z

C. An, C. Sun, and et al., J. Nanobiotechnol. 20, 11 (2022). https://link.springer.com/article/10.1186/s12951-021-01214-7

M. Chaud, E. B. Souto, and et al., Toxics 9, 131 (2021). https://www.mdpi.com/2305-6304/9/6/131

K. Harini, K. Girigoswami, and et al., J. Plant Protect. Res. 63, 137 (2023). https://doi.org/https://doi.org/10.24425/jppr.2023.145758

B. Huang, F. Chen, and et al., Nanomaterials 8, 102 (2018). https://www.mdpi.com/2079-4991/8/2/102

M. A. Islam, M. Zuba, and et al., Nanotechnology 29, 075403 (2018). https://iopscience.iop.org/article/10.1088/1361-6528/aaa231

H. Chen, W. Wang, and et al., Nanomaterials 12, 2042 (2022). https://www.mdpi.com/2079-4991/12/12/2042

S. Amiri, H. Shokrollahi, and et al., Mater. Sci. Eng. C 33, 1 (2013). https://www.sciencedirect.com/science/article/pii/S0928493112004353?via%3Dihub

D. Piché and et al., ACS Appl. Mater. Interfaces 11, 6724 (2019). https://pubs.acs.org/doi/10.1021/acsami.8b17162

Z. Liang, D. Shen, and et al., Nano Res. 17, 2234 (2024). https://link.springer.com/article/10.1007/s12274-023-6219-4

X. Peng, X. Jin, and et al., J. Catal. 398, 54 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0021951721001470?via%3Dihub

K. Ajaj, M. Al-Jubbori, and et al., J. Laser Appl. 35, 042055 (2023). https://pubs.aip.org/lia/jla/article-abstract/35/4/042055/2918561/Influence-of-ultraviolet-irradiation-on-the?redirectedFrom=fulltext

K. Ajaj, A. M. Ali, and et al., Nanosistemi, Nanomateriali, Nanotehnologii 22, 209 (2024). https://doi.org/https://doi.org/10.15407/nnn.22.01.209

K. Ajaj, M. Al-Jubbori, and et al., Radiat. Phys. Chem. 216, 111384 (2024). https://www.sciencedirect.com/science/article/abs/pii/S0969806X23006308?via%3Dihub

F. A. Mohammed, K. Ajaj, and et al., Russ. Phys. J. 67, 1015 (2024). https://link.springer.com/article/10.1007/s11182-024-03211-3

M. A. Al-Jubbori, O. Ayed, and K. Ajaj, Radiat. Phys. Chem. 226, 111358 (2025). https://www.sciencedirect.com/science/article/abs/pii/S0969806X24006820

K. Ajaj, M. Al-Jubbori, and et al., Nanosistemi, Nanomateriali, Nanotehnologii 22, 557 (2024). https://doi.org/https://doi.org/10.15407/nnn.22.03.557

A. H. A. Darwesh, P. A. Mohammed, and et al., Coatings 13, 578 (2023). https://www.mdpi.com/2079-6412/13/3/578

A. Vennela, D. Mangalaraj, and et al., Int J Electrochem Sci. 14, 3535 (2019). https://www.sciencedirect.com/science/article/pii/S1452398123019569?via%3Dihub

A. Vennela, D. Mangalaraj, and et.al, Int. J. Electrochem. Sci. 14, 3535 (2019). https://www.sciencedirect.com/science/article/pii/S1452398123019569

R. Bhargava, S. Khan, and et al., in AIP Confe. Proc., Vol. 1953 (2018) p. 030034. https://pubs.aip.org/aip/acp/article-abstract/1953/1/030034/857939/Investigation-of-structural-optical-and-electrical?redirectedFrom=fulltext

X. Zhu, J.Wang, and et al., Opt. Mater. Express 2, 103 (2012). https://opg.optica.org/ome/fulltext.cfm?uri=ome-2-1-103

R. Bhargava, S. Khan, and et al., AIP Conf. Proc. 1953, 030034 (2018). https://pubs.aip.org/aip/acp/article-abstract/1953/1/030034/857939/Investigation-of-structural-optical-and-electrical?redirectedFrom=fulltext

M. Yarestani, A. D. Khalaji, and et al., J. Sci., Islam. Repub. Iran 25, 339 (2014). https://jsciences.ut.ac.ir/article_52619.html

D. Letsholathebe, F. Thema, and et al., Mater. Today: Proc. 36, 499 (2021). https://www.sciencedirect.com/science/article/abs/pii/S2214785320337664?via%3Dihub

G. Hitkari, S. Sandhya, and et al., J. Mater. Sci. Eng. 7, 419 (2018). https://www.hilarispublisher.com/open-access/synthesis-of-chromium-doped-cobalt-oxide-crco3o4-nanoparticles-bycoprecipitation-method-and-enhanced-photocatalytic-properties-in-2169-0022-1000419.pdf

L. Qiao, H. Y. Xiao, and et al., J. Mater. Chem. C 1, 4628 (2013). https://pubs.rsc.org/en/content/articlelanding/2013/tc/c3tc30861h

I. Saini, J. Rozra, and et al., Mater. Chem. Phys. 139, 802 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0254058413001740?via%3Dihub

M. Rashidian and D. Dorranian, J. Theor. Appl. Phys. 8, 121 (2014). https://link.springer.com/article/10.1007/s40094-014-0121-0

S. A. Hamdan and I. M. Ali, Iraqi J. Phys. 17, 77 (2019). https://iasj.rdd.edu.iq/journals/uploads/2024/12/25/f4afd6964782966b9077738e4ffcb9aa.pdf

H. Yamamoto, S. Tanaka, and et al., J. Ceram. Soc. Jpn., Suppl. 112, S876 (2004). https://www.jstage.jst.go.jp/article/jcersjsuppl/112/0/112_0_S876/_article

F. K. Sabir, E. T. Bekele, and et al., J. Nanostruc 11, 577 (2021). https://jns.kashanu.ac.ir/article_111887.html

S. Farhadi, J. Safabakhsh, and et al., J. Nanostruct. Chem. 3, 69 (2013). https://oiccpress.com/jnsc/article/view/10778

E. Delnavaz and K. Asadpour-Zeynali, Results Chem. 7, 101321 (2024). https://www.sciencedirect.com/science/article/pii/S2211715624000171?via%3Dihub

How to Cite

APA

Omar Abed Al-Rashidy, W., Ajaj, K. & Al-Jubbori, M. A. (2026). PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER. MOMENTO, (72), 39–56. https://doi.org/10.15446/mo.n72.118854

ACM

[1]
Omar Abed Al-Rashidy, W., Ajaj, K. and Al-Jubbori, M.A. 2026. PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER. MOMENTO. 72 (Jan. 2026), 39–56. DOI:https://doi.org/10.15446/mo.n72.118854.

ACS

(1)
Omar Abed Al-Rashidy, W.; Ajaj, K.; Al-Jubbori, M. A. PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER. Momento 2026, 39-56.

ABNT

OMAR ABED AL-RASHIDY, W.; AJAJ, K.; AL-JUBBORI, M. A. PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER. MOMENTO, [S. l.], n. 72, p. 39–56, 2026. DOI: 10.15446/mo.n72.118854. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/118854. Acesso em: 11 feb. 2026.

Chicago

Omar Abed Al-Rashidy, Warkaa, Khalaf Ajaj, and Mushtaq Abed Al-Jubbori. 2026. “PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER”. MOMENTO, no. 72 (January):39-56. https://doi.org/10.15446/mo.n72.118854.

Harvard

Omar Abed Al-Rashidy, W., Ajaj, K. and Al-Jubbori, M. A. (2026) “PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER”, MOMENTO, (72), pp. 39–56. doi: 10.15446/mo.n72.118854.

IEEE

[1]
W. Omar Abed Al-Rashidy, K. Ajaj, and M. A. Al-Jubbori, “PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER”, Momento, no. 72, pp. 39–56, Jan. 2026.

MLA

Omar Abed Al-Rashidy, W., K. Ajaj, and M. A. Al-Jubbori. “PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER”. MOMENTO, no. 72, Jan. 2026, pp. 39-56, doi:10.15446/mo.n72.118854.

Turabian

Omar Abed Al-Rashidy, Warkaa, Khalaf Ajaj, and Mushtaq Abed Al-Jubbori. “PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER”. MOMENTO, no. 72 (January 20, 2026): 39–56. Accessed February 11, 2026. https://revistas.unal.edu.co/index.php/momento/article/view/118854.

Vancouver

1.
Omar Abed Al-Rashidy W, Ajaj K, Al-Jubbori MA. PREPARATION OF COBALT NANOSTRUCTURES USING PULSED Nd: YAG LASER. Momento [Internet]. 2026 Jan. 20 [cited 2026 Feb. 11];(72):39-56. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/118854

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

65

Downloads

Download data is not yet available.