SURVIVAL OF Bacillus cereus LSPQ 2872 AND Escherichia coli O157:H7 UNDER GAMMA RADIATION MODELED WITH TSALLIS ENTROPY
SUPERVIVENCIA DE Bacillus cereus LSPQ 2872 Y Escherichia coli O157:H7 BAJO RADIACIÓN GAMMA MODELADA CON ENTROPÍA DE TSALLIS
DOI:
https://doi.org/10.15446/mo.n72.119468Keywords:
pathogen bacteria, survival fraction curve, Tsallis entropy, gamma radiation (en)bacterias patógenas, curva de fracción de supervivencia, entropía de Tsallis, radiación gamma (es)
Downloads
The objective was to model the survival of Bacillus cereus LSPQ 2872 and Escherichia coli O157:H7 exposed to gamma radiation, using Tsallis entropy and the Monte Carlo simulation method. Monte Carlo simulations were performed with a noise level of 0.05 to assess the sensitivity of the Tsallis entropy-based models (dose-proportional effect, linear-quadratic dose-effect relationship, and Sotolongo et al.). Random values were generated for the parameters (α, β, γ, D0, and D10) of the gamma irradiation effect. The dose-proportional effect, linear-quadratic dose-effect relationship, and Sotolongo et al. models showed a good fit to the survival data of Bacillus cereus and Escherichia coli exposed to radiation. For Bacillus cereus, the dose-proportional effect and linear-quadratic dose-effect models showed similar lethal doses (0.935 and 0.844 kGy), while the Sotolongo et al. model showed a lower lethal dose (0.406 kGy), indicating greater radiation efficacy. In Escherichia coli, the dose-proportional effect and linear-quadratic dose-effect models also showed similar lethal doses (0.716 and 0.745 kGy), and the Sotolongo et al. model showed a lower lethal dose (0.319 kGy), indicating greater efficacy. Tsallis entropy-based models are suitable for describing membrane behavior and biochemical changes in bacteria exposed to gamma radiation.
El objetivo fue modelar la supervivencia de Bacillus cereus LSPQ 2872 y Escherichia coli O157:H7 expuestas a radiación gamma, empleando la entropía de Tsallis y el método de simulación Monte Carlo. Se realizaron simulaciones de Monte Carlo con un nivel de ruido de 0,05 para evaluar la sensibilidad de los modelos basados en la entropía de Tsallis (efecto proporcional a la dosis, relación efecto-dosis de tipo lineal-cuadrática y Sotolongo et al.). Se generaron valores aleatorios para los parámetros (α, β, γ, D0 y D10) del efecto de la irradiación gamma. Los modelos de efecto proporcional a la dosis, relación efecto-dosis de tipo lineal-cuadrática y de Sotolongo et al. mostraron un buen ajuste a los datos de supervivencia de Bacillus cereus y Escherichia coli expuestos a radiación. Para Bacillus cereus, los modelos de efecto proporcional a la dosis y de relación dosis-efecto lineal-cuadrático mostraron dosis letales similares (0,935 y 0,844 kGy), mientras que el modelo de Sotolongo et al. mostró una dosis letal menor (0,406 kGy), lo que indica una mayor eficacia de la radiación. En Escherichia coli, los modelos de efecto proporcional a la dosis y de relación dosis-efecto lineal-cuadrático mostraron dosis letales también similares (0,716 y 0,745 kGy), y el modelo de Sotolongo et al. refleja una dosis letal menor (0,319 kGy), lo que indica una mayor eficacia. Los modelos basados en la entropía de Tsallis son adecuados para describir el comportamiento de la membrana y los cambios bioquímicos en bacterias expuestas a la radiación gamma.
References
N. H. Martin, P. Torres-Frenzel, and M. Wiedmann, J. Dairy Sci. 104, 1251 (2021). https://www.journalofdairyscience.org/article/S0022-0302(20)31035-3/fulltext
C. Jo and et al., Food Microbiol. 21, 543 (2004). https://www.sciencedirect.com/science/article/abs/pii/S0740002003001187?via%3Dihub
A. Kaesbohrer and et al., Vet. Microbiol. 233, 52 (2019). https://www.sciencedirect.com/science/article/pii/S0378113518300804?via%3Dihub
T. M. Osaili and et al., LWT 98, 438 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0023643818307497?via%3Dihub
D. Fernandes and A. Prakash, Radiat. Phys. Chem. 168, 108531 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0969806X19305961?via%3Dihub
P. Tawema and et al., LWT 65, 451 (2016). https://www.sciencedirect.com/science/article/abs/pii/S0023643815301109?via%3Dihub
C. S. Kim and et al., ACS Cent. Sci. 6, 197 (2020). https://pubs.acs.org/doi/10.1021/acscentsci.9b01076
I. Pérez-Portuondo, Rev. Cuba. Salud Publica 38, 98 (2012). https://www.scielosp.org/pdf/rcsp/2012.v38n1/98-108/es
A. Y. Forero and et al., Biomédica 38, 338 (2018). https://revistabiomedica.org/index.php/biomedica/article/view/3802
D. Chen and et al., Food Chem. 344, 128675 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0308814620325371?via%3Dihub
S. Shankar and et al., Microb. Pathog. 143, 104118 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0882401020302242?via%3Dihub
P. P. Akhila and et al., Trends Food Sci. Technol. 114, 399 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0924224421003873?via%3Dihub
J. Jovanovic and et al., Compr. Rev. Food Sci. Food Saf. 20, 3719 (2021). https://ift.onlinelibrary.wiley.com/doi/10.1111/1541-4337.12785
B. Bisht, P. Bhatnagar, and et al., Trends Food Sci. Technol. 114, 372 (2021).
A. Adu-Gyamfi and et al., Radiat. Phys. Chem. 77, 174 (2008). https://www.sciencedirect.com/science/article/abs/pii/S0924224421003678?via%3Dihub
S. Ayari and et al., Int. J. Food Microbiol. 135, 1 (2009). https://www.sciencedirect.com/science/article/abs/pii/S0168160509003584?via%3Dihub
M. Munshi and et al., J. Food Process. Preserv. 45, 20 (2021). https://onlinelibrary.wiley.com/doi/10.1111/jfpp.16054
O. Sotolongo-Grau and et al., Phys. Rev. Lett. 105, 158105 (2010). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.158105
S. Muftu, in Finite Elem. Method, edited by S. Muftu (Academic Press, 2022) pp. 9–60. https://www.sciencedirect.com/science/chapter/monograph/abs/pii/B9780128211274000086?via%3Dihub
N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949). https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310
M. Tubiana, Introduction to Radiobiology (CRC Press, 1990). https://www.taylorfrancis.com/books/mono/10.4324/9780203983669/introduction-radiobiology-maurice-tubiana
M. A. Sacristán and J. C. Antoranz, Modelado de supervivencia celular a radiación ionizante basado en la maximización de la entropía de tsallis. (tesis de maestria) (2015). https://e-spacio.uned.es/entities/publication/15237c8a-fe6a-4615-ae91-8c04bc461522
C. Tsallis, J. Stat. Phys. 52, 479 (1988). https://link.springer.com/article/10.1007/BF01016429
S. Abe, Phys. A Stat. Mech. its Appl. 300, 417 (2001). https://www.sciencedirect.com/science/article/abs/pii/S037843710100348X?via%3Dihub
D. Saldaña-Ulloa, Modelo de tratamiento para tumores en presencia de radiación (tesis de maestría) (2017). https://arxiv.org/pdf/1710.11551
S. Ayari, D. Dussault, and et al., Food Microbiol. 32, 361 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0740002012001621
T. M. Osaili, A. A. Al-Nabulsi, and et al., Int. J. Food Microbiol. 278, 20 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0168160518301892?via%3Dihub
S. Baatout, in Radiobiology Textbook (2023) pp. 191–236. https://link.springer.com/book/10.1007/978-3-031-18810-7
O. Sotolongo-Costa and O. Sotolongo-Grau, Rev. Cub. Fis. 29, 48 (2012). https://www.researchgate.net/profile/O-Sotolongo-Costa/publication/236136181_Tsallis_formalism_in_radiobiology/links/5474bb1a0cf2778985abf9a3/Tsallis-formalism-in-radiobiology.pdf
S. J. McMahon, Phys. Med. Biol. 64, 24 (2018). https://iopscience.iop.org/article/10.1088/1361-6560/aaf26a
D. Brenner and et al., Radiat. Res. 150, 83 (1998). https://www.jstor.org/stable/3579648?origin=crossref
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.







