DECODING PHOSGENE-HEME INTERACTIONS: A DFT STUDY REVEALS Fe-Cl COORDINATION DOMINANCE AND THERAPEUTIC TARGETS
DESCODIFICACIÓN DE LAS INTERACCIONES FOSGENO-HEMO: UN ESTUDIO DFT REVELA LA DOMINANCIA DE LA COORDINACIÓN Fe–Cl Y POSIBLES BLANCOS TERAPÉUTICOS
DOI:
https://doi.org/10.15446/mo.n72.120129Keywords:
phosgene-heme interaction, DFT toxicology, iron-porphyrin binding, chemical warfare antidotes, electronic structure modulation (en)interacción fosgeno-hemo, toxicología DFT, unión hierro-porfirina, antídotos de guerra química, modulación de estructura electrónica (es)
Downloads
Phosgene (COCl₂), a highly toxic industrial and chemical warfare agent, exerts its pathological effects through poorly understood interactions with heme-containing proteins. The essence of this study lies in elucidating the atomic-level mechanisms of phosgene-heme binding, with the primary objective of identifying the dominant coordination mode and its implications for toxicity and therapeutic intervention. This study employs density functional theory (DFT) at the B3LYP-D3/6-311+G(d,p) level to systematically investigate phosgene adsorption on heme (C₂₀H₁₂FeN₄), revealing two distinct binding modes: Fe(II)-O and Fe(II)-Cl coordination. Our calculations demonstrate that the Fe-Cl configuration is energetically favored (BE = -4.38 eV/-100.9 kcal/mol at 2.96 Å) over Fe-O binding (1.59 eV/36.6 kcal/mol at 1.55 Å), a preference validated by comparison with EXAFS data (Fe-Cl ∼2.90-3.10 Å) and experimental optical spectra. The identified angular dependence shows catastrophic binding energy reduction (-8.83 eV) beyond 80° rotation, while solvent effects (water, ethanol) weaken Fe-O binding by ∼25%, correlating with observed humidity-dependent toxicity attenuation. Electric field modulation (0.01 au) reduces Fe-Cl binding energy by 10%, suggesting novel detoxification strategies. UV-Vis spectral simulations reproduce the characteristic Soret band shifts (Δλ = 22 nm) observed in phosgene-exposed hemoglobin, establishing a computational framework for predicting toxicological outcomes. These findings provide: (1) the first atomic-level explanation of phosgene's heme-binding selectivity, (2) quantitative structure-toxicity relationships for antidote development, and (3) a validated methodology for studying related toxic gas-biomolecule interactions. The work bridges computational chemistry and biomedical defense, offering mechanistic insights to guide therapeutic interventions against chemical threats.
El fosgeno (COCl₂), un agente altamente tóxico utilizado en la industria y en la guerra química, ejerce sus efectos patológicos mediante interacciones poco comprendidas con proteínas que contienen hemo. Este estudio tiene como propósito dilucidar, a nivel atómico, los mecanismos de unión entre el fosfogeno y el hemo, con el objetivo principal de identificar el modo de coordinación dominante y sus implicaciones en la toxicidad y en la intervención terapéutica. Se empleó teoría del funcional de la densidad (DFT, por sus siglas en inglés), en el nivel B3LYP-D3/6-311+G(d,p) para investigar sistemáticamente la adsorción de fosgeno sobre el hemo (C₂₀H₁₂FeN₄), revelando dos modos de enlace distintos: coordinación Fe(II)-O y Fe(II)-Cl. Nuestros cálculos demuestran que la configuración Fe-Cl es energéticamente más favorable (BE = -4.38 eV/-100.9 kcal.mol-1 a 2.96 Å) frente a la unión Fe-O (1.59 eV/36.6 kcal.mol-1 a 1.55 Å), una preferencia validada mediante comparación con datos de EXAFS (Fe-Cl ∼2.90-3.10 Å) y espectros ópticos experimentales. La dependencia angular identificada muestra una reducción drástica de la energía de enlace (-8.83 eV) por encima de los 80° de rotación, mientras que los efectos del disolvente (agua, etanol) debilitan la unión Fe-O en un ∼25%, correlacionándose con la atenuación observada de la toxicidad dependiente de la humedad. La modulación mediante campo eléctrico (0.01 au) reduce la energía de enlace Fe-Cl en un 10%, lo que sugiere estrategias novedosas de desintoxicación. Las simulaciones de espectros UV-Vis reproducen los desplazamientos característicos de la banda de Soret (Δλ = 22 nm) observados en la hemoglobina expuesta al fosgeno, estableciendo un marco computacional para predecir efectos toxicológicos. Estos hallazgos proporcionan: (1) la primera explicación a nivel atómico de la selectividad del fosgeno por el hemo, (2) relaciones cuantitativas entre estructura y toxicidad para el desarrollo de antídotos, y (3) una metodología validada para estudiar interacciones entre gases tóxicos y biomoléculas. Este trabajo conecta la química computacional con la defensa biomédica, ofreciendo perspectivas mecanicistas que orientan el diseño de intervenciones terapéuticas contra amenazas químicas.
References
D. A. Jett and S. M. Spriggs, Neurobiol. Dis. 133, 104335 (2020). https://www.sciencedirect.com/science/article/pii/S0969996118307514?via%3Dihub
Q. Lu, S. Huang, and et al., Int. J. Mol. Sci. 22, 10933 (2021). https://www.mdpi.com/1422-0067/22/20/10933
S. Katti, S. B. Nyenhuis, and et al., Biophys. J. 118, 1409 (2020). https://www.cell.com/biophysj/fulltext/S0006-3495(20)30105-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0006349520301053%3Fshowall%3Dtrue
Y. Tang, H. Liang, and et al., Inorg. Chem. 60, 10315 (2021). https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00789
C. Heckl, M. Eisel, and et al., Transl. Biophotonics 3, e202000026 (2021). https://onlinelibrary.wiley.com/doi/10.1002/tbio.202000026
C. Cao, L. Zhang, and et al., Front. Immunol. 13, 917395 (2022). https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.917395/full
A. Asgari and et al., Cell J. 26, 91 (2024). https://www.celljournal.org/article_710498.html
E. Daplan, E. Rodriguez, and et al., Free Radic. Biol. Med. 238, 113 (2025). https://www.sciencedirect.com/science/article/pii/S0891584925007828
S. Kaur, V. Saini, and et al., Forensic Sci. Int. 307, 110078 (2020). https://www.sciencedirect.com/science/article/abs/pii/S0379073819304906?via%3Dihub
C. Saygin, H. E. Carraway, and et al., Blood Rev. 48, 100791 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0268960X20301417?via%3Dihub
I. Persson, J. Solut. Chem. 47, 797 (2018). https://link.springer.com/article/10.1007/s10953-018-0756-6
T. Yoshitomi, K. Wakui, and et al., Res. Pract. Thromb. Haemost. 5, e12503 (2021). https://www.rpthjournal.org/article/S2475-0379(22)01399-1/fulltext
D. A. Scherlis, M. Cococcioni, and et al., J. Phys. Chem. B 111, 7384 (2007). https://pubs.acs.org/doi/10.1021/jp070549l
M. Jiang, C.-H. Yu, and et al., J. Chem. Theory Comput. 20, 4229 (2024). https://pubs.acs.org/doi/10.1021/acs.jctc.4c00029
K. Falahati, H. Tamura, and et al., Nat. Commun. 9, 4502 (2018). https://www.nature.com/articles/s41467-018-06615-1
A. Taia, B. E. Ibrahimi, and et al., J. Mol. Struct. 1234, 130189 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0022286021003203?via%3Dihub
J. Waite, G. M. Cole, and et al., Neurobiol. Aging 13, 595 (1992). https://www.sciencedirect.com/science/article/abs/pii/0197458092900623?via%3Dihub
D. Bím and et al., ACS Catal. 11, 6534 (2021). https://pubs.acs.org/doi/10.1021/acscatal.1c00687
Y. Li, F. Guo, and et al., Toxicol. Appl. Pharmacol. 418, 115481 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0041008X21000880?via%3Dihub
J. Oláh and et al., J. Phys. Chem. A 113, 7338 (2009). https://pubs.acs.org/doi/10.1021/jp811316n
Y. Zuo and et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 258, 119847 (2021). https://www.sciencedirect.com/science/article/abs/pii/S1386142521004236?via%3Dihub
S. Modha and et al., Biosens. Bioelectron. 178, 113026 (2021). https://www.sciencedirect.com/science/article/abs/pii/S0956566321000622?via%3Dihub
A. B. Solea, C. Curty, and et al., Chem. Eur. J. 28, e202201772 (2022). https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202201772
M. J. Frisch and et al., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT (2016). https://gaussian.com/citation/
R. Dennington, T. A. Keith, and et al., GaussView 6.1.1 Semichem Inc., Shawnee Mission, KS (2019). https://gaussian.com/gv611rn/
A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://pubs.aip.org/aip/jcp/article-abstract/98/7/5648/842114/Density-functional-thermochemistry-III-The-role-of?redirectedFrom=fulltext
P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985). https://pubs.aip.org/aip/jcp/article-abstract/82/1/270/219079/Ab-initio-effective-core-potentials-for-molecular?redirectedFrom=fulltext
S. Grimme, J. Antony, and et al., J. Chem. Phys. 132, 154104 (2010). https://pubs.aip.org/aip/jcp/article-abstract/132/15/154104/926936/A-consistent-and-accurate-ab-initio?redirectedFrom=fulltext
C. Lee, W. Yang, and et al., Phys. Rev. B 37, 785 (1988). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.37.785
J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., 1996). https://gaussian.com/expchem3/
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Springer, New York, 1979). https://link.springer.com/book/10.1007/978-1-4757-0961-2
J. Tomasi and et al., Chem. Rev. 105, 2999 (2005). https://pubs.acs.org/doi/10.1021/cr9904009
A. Nagoya, I. Hamada, and et al., e-J. Surf. Sci. Nanotech. 6, 99 (2008). https://www.jstage.jst.go.jp/article/ejssnt/6/0/6_0_99/_article
R. Bauernschmitt and et al., Chem. Phys. Lett. 256, 454 (1996). https://www.sciencedirect.com/science/article/abs/pii/000926149600440X?via%3Dihub
H. V. Vyas, S. K. Wong, and et al., J. Am. Chem. Soc. 97, 3240 (1975). https://pubs.acs.org/doi/abs/10.1021/ja00839a017
R. L. McKenzie, J. Chem. Phys. 64, 1498 (1976). https://pubs.aip.org/aip/jcp/article-abstract/64/4/1498/786848/Vibration-translation-energy-transfer-in?redirectedFrom=fulltext
H. Steinfink and C. D. Brandle, Inorg. Chem. 10, 691 (1971). https://pubs.acs.org/doi/abs/10.1021/ic50099a012
K. Nienhaus and et al., J. Phys. Chem. B 116, 12180 (2012). https://pubs.acs.org/doi/10.1021/jp306775n
L. Zhang and et al., J. Comput. Chem. 22, 591 (2001). https://onlinelibrary.wiley.com/doi/10.1002/jcc.1031
J. Stanley and S. A. Vassilenko, Nature 274, 87 (1978). https://www.nature.com/articles/274087a0
M. A. Thompson and G. K. Schenter, J. Phys. Chem. 99, 6374 (1995). https://pubs.acs.org/doi/abs/10.1021/j100017a017
W. Eaton and J. Hofrichter, in Methods in Enzymology, Vol. 76 (Academic Press, 1981) pp. 175–261. https://www.sciencedirect.com/science/chapter/bookseries/abs/pii/0076687981761263?via%3Dihub
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.







