OPTIMIZATION OF IMAGE QUALITY IN A RADIOTHERAPY CT SIMULATOR: DEVELOPMENT OF A SPECIFIC PROTOCOL
OPTIMIZACIÓN DE LA CALIDAD DE IMAGEN EN UN TOMÓGRAFO SIMULADOR PARA RADIOTERAPIA: DESARROLLO DE UN PROTOCOLO ESPECÍFICO
DOI:
https://doi.org/10.15446/mo.n72.123845Keywords:
Simulator CT, image optimization, image quality, radiotherapy, treatment planning (en)tomógrafo simulador, optimización de imagen, calidad de imagen, radioterapia, planificación del tratamiento (es)
Downloads
This study aimed to optimize the scan parameters of the Siemens Somatom Scope CT simulator to ensure optimal image quality for the detection of brain tumors. To achieve this, measurements were performed using the Catphan CTP 503 phantom, evaluating metrics such as the contrast-to-noise ratio (CNR), low-contrast visibility (LCV), signal-to-noise ratio (SNR), noise level, and uniformity index (UI). The optimization process involved adjusting scan parameters such as kilovoltage (kV), tube current (mA), and the automatic exposure control system (CareDose4D).
The results showed that the optimized protocol (Protocol 2) achieved the highest CNR values—61.41 for polymethylpentene (PMP) and 47.9 for low-density polyethylene (LDPE)—as well as the best LCV and an SNR of 31.2. In addition, it exhibited the lowest noise level (0.3%) and the best uniformity index (0.03). These findings suggest that Protocol 2 may be an effective tool for improving the accuracy of brain structure delineation and other anatomical regions, thereby enhancing radiotherapy treatment planning.
El presente estudio tuvo como objetivo optimizar los parámetros de exploración del tomógrafo simulador Siemens Somatom Scope para garantizar una calidad de imagen óptima en la detección de tumores cerebrales. Para ello, se realizaron mediciones con el fantoma Catphan CTP 503, evaluando indicadores como la relación contraste-ruido (CNR), la visibilidad de bajo contraste (LCV), la relación señal-ruido (SNR), el nivel de ruido y el índice de uniformidad (UI). La optimización se llevó a cabo ajustando parámetros de exploración como kilovoltaje (kV), miliamperaje (mA) y el modo automático (CareDose4D).
Los resultados demostraron que el protocolo optimizado (Protocolo 2) alcanzó la mayor CNR de 61.41 para polimetilpenteno (PMP) y 47.9 para Polietileno de Baja Densidad (LDPE), así como la mejor LCV y una SNR de 31.2. Asimismo, presentó el menor nivel de ruido (0.3%) y el mejor índice de uniformidad (0.03). Estos hallazgos sugieren que el Protocolo 2 puede ser una herramienta efectiva para mejorar la precisión en el delineamiento de estructuras cerebrales y otras regiones anatómicas, optimizando la planificación de tratamientos en radioterapia.
References
A. Calzado and J. Geleijns, Rev. F´ıs. M´ed. 11, 163 (2010). https://revistadefisicamedica.es/index.php/rfm/article/view/115
A. Davis, A. Palmer, and A. Nisbet, Br. J. Radiol. 90, 20160406 (2017). https://academic.oup.com/bjr/article-abstract/90/1076/20160406/7445902?redirectedFrom=fulltext
K. Estak and et al., J. Radiother. Pract. 20, 340 (2020). https://www.cambridge.org/core/journals/journal-of-radiotherapy-in-practice/article/abs/optimisation-of-ct-scan-parameters-to-increase-the-accuracy-of-gross-tumour-volume-identification-in-brain-radiotherapy/157BA139744B8A22A37526AF8AB56465
G. Marinello, Training course on clinical dosimetry and quality assurance for advanced radiation therapy techniques (AAPM ISEP) (2008), IAEA. Czech Association of Medical Physicists. https://inis.iaea.org/records/vnxy6-n7808
N. Tomic, P. Papaconstadopoulos, and et al., Phys. Med. 45, 65 (2018). https://www.physicamedica.com/article/S1120-1797(17)30612-9/abstract
The Phantom Laboratory, Catphan®503 Test Object: User’s Manual (2017), version 10/16. https://static1.squarespace.com/static/5367b059e4b05a1adcd295c2/t/58b5c81659cc6836cd99693b/1488308248425/Test+CTP503+Manual+10_16.pdf
Y. Li, Y. Jiang, and et al., Quant. Imaging Med. Surg. 12, 766 (2022). https://qims.amegroups.org/article/view/77540/html
M. A. Hobson and et al., J. Appl. Clin. Med. Phys. 15, 4835 (2014). https://aapm.onlinelibrary.wiley.com/doi/10.1120/jacmp.v15i4.4835
K. Albus, American College of Radiology (ACR), Phantom Testing: CT (2022). https://accreditationsupport.acr.org/support/solutions/articles/11000056197-phantom-testing-ct-revised-11-9-2022-
A. Omigbodun and et al., Med. Phys. 48, 1054 (2020). https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.14657
G. Chen and et al., Phys. Imaging Radiat. Oncol. 4, 6 (2017). https://www.sciencedirect.com/science/article/pii/S240563161630029X?utm_source=chatgpt.com
M. Kawula and et al., Radiation Oncology 17, 1 (2022). https://link.springer.com/article/10.1186/s13014-022-01985-9
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.







