A QUANTUM CHEMICAL STUDY OF SMALL MOLECULES USED AS ACTIVE LAYER COMPONENT OF ORGANIC SOLAR CELLS
ESTUDIO TEÓRICO CUÁNTICO DE PEQUEÑAS MOLÉCULAS UTILIZADAS COMO COMPONENTE DE LA CAPA ACTIVA DE CELDAS SOLARES ORGÁNICAS
DOI:
https://doi.org/10.15446/mo.n61.87232Keywords:
HOMO, LUMO, NMR, DFT (en)HOMO, LUMO, NMR, DFT (es)
Downloads
Organic solar cells (OSCs) are one of the best alternatives in the photovoltaic area. These devices convert directly sunlight into electrical current with reasonable efficiencies. The most important component of an OSC is the photoconductive active layer which can be made of small organic molecules. In this theoretical study, a quantum chemical approach was applied to calculate the properties such as the energy of Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), LUMO-HOMO energy gap, and the theoretical 1H NMR chemical shifts (the latter only for one molecule) for four organic molecules that exist in the literature. The geometry optimization of the four small molecules and the corresponding calculations were performed using Gaussian 09 software by means of the Density Functional Theory (DFT) at the B3LYP/6-31G(d) theoretical level. All the reported experimental values given in the papers were compared with the obtained theoretical values via a linear regression analysis. Our computational study showed good agreement with the experimental data as the regression analysis showed a coefficient of determination greater than 0.99.
Las celdas solares orgánicas (OSC) son una de las mejores alternativas en el área fotovoltaica. Estos dispositivos convierten directamente la luz solar en corriente eléctrica con eficiencias razonables. El componente más importante de una OSC es la capa activa fotoconductora que puede estar hecha de moléculas orgánicas. En este estudio teórico, se aplicó un enfoque químico cuántico para calcular propiedades de cuatro moléculas orgánicas, como la energía del orbital molecular ocupado más alto (HOMO) y el orbital molecular desocupado más bajo (LUMO), la brecha de energía LUMO-HOMO y los cambios químicos teóricos de 1H NMR (este último solo para una molécula). La optimización de la geometría de las cuatro moléculas pequeñas y los cálculos correspondientes se realizaron utilizando el software Gaussian 09 mediante la Teoría Funcional de la Densidad (DFT) en el nivel teórico B3LYP/6-31G(d). Los valores experimentales encontrados en la literatura fueron comparados con los valores teóricos obtenidos mediante un análisis de regresión lineal. Este estudio computacional mostró una buena concordancia con los datos experimentales, el análisis de regresión mostró un coeficiente de determinación superior a 0.99.
References
E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim, Renew. Sustain. Energy Rev. 82, 894 (2018).
S. Samadi, Renew. Sustain. Energy Rev. 82, 2346 (2018).
A. D. Hendsbee, J.-P. Sun, L. R. Rutledge, I. G. Hill, G. C. Welch, C. Tanase, J. C. Hummelen, P. W. M. Blom, H.-Z. Chen, G. C. Bazan, A. Sellinger, Q. Shi, Y. Liu, J. Yao, Y. Chen, D. Li, F. Huang, J. Wang, J. Peng, and Y. Cao, J. Mater. Chem. A 2, 4198 (2014).
S. Kutkan, S. Goker, S. O. Hacioglu, and L. Toppare, J. Macromol. Sci. Part A 53, 475 (2016).
J. Heo, J.-W. Oh, H.-I. Ahn, S.-B. Lee, S.-E. Cho, M.-R. Kim, J.-K. Lee, and N. Kim, Synth. Met. 160, 2143 (2010).
W. Chen, Z. Du, M. Xiao, J. Zhang, C. Yang, L. Han, X. Bao, and R. Yang, ACS Appl. Mater. Interfaces 7, 23190 (2015).
G. J. Hedley, A. Ruseckas, and I. D. W. Samuel, Chem. Rev. 117, 796 (2017).
V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, ACS Appl. Mater. Interfaces 3, 3252 (2011).
M. Tang, B. Sun, D. Zhou, Z. Gu, K. Chen, J. Guo, L. Feng, and Y. Zhou, Org. Electron. 38, 213 (2016).
E. M. Nowak, J. Sanetra, M. Grucela, and E. Schab-Balcerzak, Mater. Lett. 157, 93 (2015).
P. Ma, C. Wang, S. Wen, L. Wang, L. Shen, W. Guo, and S. Ruan, Sol. Energy Mater. Sol. Cells 155, 30 (2016).
S.-S. Sun, J. Brooks, T. Nguyen, A. Harding, D. Wang, and T. David, Energy Procedia 57, 79 (2014).
H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).
E. S. Kryachko and E. V. Ludeña, Phys. Rep. 544, 123 (2014).
A. Irfan, H. Aftab, and A. G. Al-Sehemi, J. Saudi Chem. Soc. 18, 914 (2014).
S. Tadesse and T. Yohannes, Bull. Chem. Soc. Ethiop. 26, 287 (2012).
P. Pounraj, V. Mohankumar, M. S. Pandian, and P. Ramasamy, J. Mol. Model. 24, 343 (2018).
H. Yuksek, I. Cakmak, S. Sadi, M. Alkan, and H. Baykara, Int. J. Mol. Sci. 6, 219 (2005).
M. G. Siskos, P. C. Varras, and I. P. Gerothanassis, Tetrahedron 76, 130979 (2020).
B. Xerri, F. Labat, K. Guo, S. Yang, and C. Adamo, Theor. Chem. Acc. 135, 40 (2016).
M. M. Talmaciu, E. Bodoki, and R. Oprean, Clujul Med. 89, 513 (2016).
A. Hellal, S. Chafaa, N. Chafai, and L. Touafri, J. Mol. Struct. 1134, 217 (2017).
J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, and et al, J. Phys. Chem. Lett. 2, 2241 (2011).
H. Zhen, Z. Peng, L. Hou, T. Jia, Q. Li, and Q. Hou, Dye. Pigment. 113, 451 (2015).
D. Dang, P. Zhou, Y. Zhi, X. Bao, R. Yang, L. Meng, and W. Zhu, J. Mater. Sci. 51, 8018 (2016).
E. Frisch, M. J. Frisch, G. W. Trucks, et. al., Gaussian Pittsburgh, PA (2009).
J. H. Æleen Frisch, Hrant P. Hratchian, Roy D. Dennington II, Todd A. Keith, John Millam, Alice B. Nielsen, Andrew J. Holder, Gaussview 5 (Gaussian Inc, Wallingford, 2009).
Lee, Yang, and Parr, Phys. Rev. B. Condens. Matter 37, 785 (1988).
K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).
P. Dhamodharan, K. Sathya, and M. Dhandapani, J. Mol. Struct. 1146, 782 (2017).
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
V. A. Naumov, S. Samdal, A. V Naumov, S. Gundersen, and H. V Volden, Russ. J. Gen. Chem. 75, 1956 (2005).
F. Nourmohammadian, I. Yavari, A. Mirhabibi, and S. Moradi, Dye. Pigment. 67, 15 (2005).
I. Martinez, E. Schott, I. Chávez, J. M. Manríquez, and X. Zarate, Chem. Phys. Lett. 659, 31 (2016).
C.-G. Zhan, J. A. Nichols, and D. A. Dixon, J. Phys. Chem. A 107, 4184 (2003).
R. Oshi, S. Abdalla, and M. Springborg, Comput. Theor. Chem. 1128, 60 (2018).
C. Wang, Electronic Structure of -Conjugated Materials and Their Eect on Organic Photovoltaics (Linkoping University, 2017).
R. Dutta and D. J. Kalita, Comput. Theor. Chem. 1132, 42 (2018).
T. L. Nelson, T. M. Young, J. Liu, and et al., Adv. Mater. Technol. 22, 4617 (2010).
J. Foresman and A. Frisch, Exploring Chemistry With Electronic Structure Methods, 3rd edition (Wiley, 2015).
B. Sambathkumar, P. S. V. Kumar, K. Saurav, and et al., New J. Chem. 40, 3803 (2016).
M. Bourass, A. T. Benjelloun], M. Hamidi, and et al., J. Saudi Chem. Soc. 20, S415 (2016).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 MOMENTO

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.