Effect of the magnetic field on the synthesis of colloidal silver and gold nanoparticles by laser ablation in bidestilated water
Efecto del campo magnético en la síntesis de nanopartículas de oro y plata coloidal por ablación láser en agua bidestilada
DOI:
https://doi.org/10.15446/mo.n63.91515Keywords:
laser ablation in liquids, magnetic confinement, nanoparticles concentration (en)Ablación láser en líquidos, confinamiento magnético, concentración de nanopartículas. (es)
Downloads
The effect of magnetic field of 0.3 T on the concentration, distribution of sizes in suspension and zeta potential of colloidal gold and colloidal silver nanoparticles, obtained by considering the pulsed laser ablation in double distilled water was studied. The magnetic field was transverse to the direction of incidence of the laser radiation and parallel to the surface of a submerged target. An Nd: YAG laser was used (1064 nm in wavelength, 10 ns in duration, repetition rate of 10 Hz and 37 mJ of energy) to ablate targets. The colloids were characterized by inductively coupled plasma optical emission spectroscopy, ultraviolet-visible spectroscopy, dynamic light scattering and zeta potential. Concentration analysis suggested that applying magnetic field of 0.3 T during nanoparticle synthesis leads to higher concentration. Applying magnetic field led to an eleven percent increase in the concentration of the colloid with gold nanoparticles and a five percent increase in the concentration of the colloidal silver nanoparticles. The absorption spectra suggested the presence of spherical nanoparticles. When analyzing the effect of the magnetic field on the hydrodynamic size distribution of the nanoparticles and the zeta potential of the colloids, no significant changes were evidenced. The magnetic confinement of the plasma induced by laser ablation caused changes in the characteristics of the colloids.
Se estudió el efecto del campo magnético (0.3 T) sobre la concentración, distribución de tamaños en suspensión y potencial zeta de nanopartículas coloidales de oro y plata, obtenidas al considerar la técnica de ablación láser pulsada en agua bidestilada. El campo magnético fue transversal a la dirección de incidencia de la radiación láser y paralelo a la superficie del blanco sumergido. Se utilizó un láser Nd:YAG, emitiendo pulsos de 1064 nm de longitud de onda, 10 ns de duración, razón de repetición de 10 Hz y 37 mJ de energía. Los coloides fueron caracterizados al considerar las técnicas: espectroscopia de emisión por plasma de acoplamiento inductivo, espectroscopia ultravioleta-visible, esparcimiento dinámico de luz y potencial zeta. Los análisis de concentración demostraron que aplicar campo magnético de 0.3 T durante la síntesis de nanopartículas conlleva a obtener mayor concentración. Aplicar campo magnético conllevó a incrementar en once por ciento la concentración del coloide con nanopartículas de oro y en cinco por ciento la concentración del coloide con nanopartículas de plata. Los espectros de absorción obtenidos son característicos de nanopartículas esféricas. Al analizar el efecto del campo magnético en la distribución de tamaños hidrodinámicos de las nanopartículas y en el potencial zeta, no se evidenció cambios significativos. El confinamiento magnético del plasma inducido por ablación láser ocasionó cambios en las características de los coloides.
References
C. Ye, G. J. Cheng, S. Tao, and B. Wu, J. Manuf. Sci. Eng. 135, 061020 (2013).
A. De Giacomo, M. Dell'Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G. C. Messina, G. Compagnini, and S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083 (2013).
S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, and S. Barcikowski, Appl. Phys. Lett. 101, 103 (2012).
X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, Appl. Opt. 43, 3251 (2004).
M. Dell'Aglio, R. Gaudiuso, O. De Pascale, and A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015).
A. Nikolov, N. Nedyalkov, R. Nikov, P. Atanasov, M. Alexandrov, and D. Karashanova, Appl. Phys. A 109, 315 (2012).
A. Menéndez and S. Barcikowski, Appl. Surf. Sci. 257, 4285 (2011).
E. Solati, M. Mashayekh, and D. Dorranian, Appl. Phys. A 112, 689 (2013).
M. H. Mahdieh and B. Fattahi, Appl. Surf. Sci. 329, 47 (2015).
A. Neogi and R. Thareja, J. Appl. Phys. 85, 1131 (1999).
P. Liu, R. Hai, D. Wu, Q. Xiao, L. Sun, and H. Ding, Plasma Science and Technology 17, 687 (2015).
K. Kim, M. Roy, H. Kwon, J. Song, and S. Park, J. Appl. Phys. 117, 074302 (2015).
K. S. Singh and A. K. Sharma, J. Appl. Phys. 119, 183301 (2016).
J. Rodríguez, C. Barazorda, L. Pollack, M. Contreras, and C. Aldana, Arnaldoa 25, 1015 (2018).
M. Sportelli, M. Izzi, A. Volpe, M. Clemente, R. Picca, A. Ancona, P. Lugarà, G. Palazzo, and N. Cioffi, Antibiotics 7, 67 (2018).
F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, J. Phys. Chem. B 104, 9111 (2000).
T. Tsujia, K. Iryo, N. Watanabe, and M. Tsuji, Appl. Surf. Sci. 202, 80 (2002).
T. Tsuji, T. Yahata, M. Yasutomo, K. Igawa, M. Tsuji, Y. Ishikawa, and N. Koshizaki, Phys. Chem. Chem. Phys. 15, 3099 (2013).
A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki, Appl. Phys. A Mater. Sci. Process. 79, 803 (2004).
T. Tsuji, D. H. Thang, T. Okazaki, M. Nakanishi, Y. Tsuboi, and M. Tsuji, Appl. Surf. Sci. 254, 5224 (2008).
R. Singh and R. Soni, Appl. Phys. A 116, 689 (2014).
M. Aliofkhazraei, Handbook of Nanoparticles (Springer International Publishing, 2016) p. 67.
S. Siano, R. Pini, R. Salimbeni, and M. Vannini, Appl. Phys. B 62, 503 (1996).
M. Valverde, T. García, M. Villagrán, C. Sánchez, R. Castañeda, E. Esparza, C. Sánchez, J. Sánchez, and C. Márquez, Appl. Surf. Sci. 355, 341 (2015).
T. Tsuji, K. Iryo, Y. Nishimura, and M. Tsuji, J. Photoch. Photobio. A 145, 201 (2001).
D. Dorranian, S. Tajmir, and F. Khazanehfar, Soft Nanosci. Lett. 3, 93 (2013).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Raid A. Ismail, Suaad S. Shaker, Sura F. Abdulmuneem. (2022). Preparation of nanostructured PbI2/Si photodetector by magnetic field-assisted laser ablation in liquid. Silicon, 14(16), p.10291. https://doi.org/10.1007/s12633-022-01757-w.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.