UNIVERSE WITH HOLOGRAPHIC DARK ENERGY
UNIVERSO CON ENERGÍA OSCURA HOLOGRÁFICA
DOI:
https://doi.org/10.15446/mo.n61.83891Palabras clave:
Holographic dark energy, Friedmann-Lemaître-Robertson-Walker Universe, general relativity, ΛCDM model (en)Energía oscura holográfica, Universo Friedmann-Lemaître-Robertson-Walker, relatividad general, modelo ΛCDM (es)
Descargas
En este trabajo exploramos un modelo de energía oscura holográfica en un universo plano de Friedmann-Lemaître-Robertson-Walker, que contiene bariones, radiación, materia oscura fría y energía oscura en
el marco de la relatividad general. Además, consideramos tres tipos de interacciones fenomenológicas en el sector oscuro. Con el modelo propuesto obtuvimos las expresiones algebraicas para los parámetros cosmológicos de nuestro interés: los parámetros de desaceleración y coincidencia. Del mismo modo, comparamos gráficamente el modelopropuesto con el modelo ΛCDM.
(Recibido:
12/2019. Aceptado: 04/2020)
Abstract
In this work we explore a
Holographic Dark Energy Model in a flat Friedmann-Lematre-Robertson-Walker
Universe, which contains baryons, radiation, cold dark matter and dark energy
within the framework of General Relativity. Furthermore, we consider three
types of phenomenological interactions in the dark sector. With the proposed
model we obtained the algebraic expressions for the cosmological parameters of
our interest: the deceleration and coincidence parameters. Likewise, we
graphically compare the proposed model with the ΛCDM model.
Keywords: Holographic
dark energy, general relativity, Friedmann- Lemaître -Robertson-Walker
Universe, ΛCDM
model.
Resumen
En este trabajo exploramos un modelo de energía oscura holográfica en un universo plano de Friedmann- Lemaître -Robertson-Walker, que contiene bariones, radiación, materia oscura fría y energía oscura en el marco de la relatividad general. Además, consideramos tres tipos de interacciones fenomenológicas en el sector oscuro. Con el modelo propuesto obtuvimos las expresiones algebraicas para los parámetros cosmológicos de nuestro interés: los parámetros de desaceleración y coincidencia. Del mismo modo, comparamos gráficamente el modelo propuesto con el modelo ΛCDM.
Palabras clave: Energía oscura holográfica, relatividad general, Universo Friedmann- Lemaître -Robertson-Walker, modelo ΛCDM.
Introduction
Nowadays
it is well known that cosmological models must describe an accelerated
expansion of the Universe at the present era [13]. To achieve this, sources of
matter capable of generating this acceleration are considered, which are
commonly dubbed dark energy [4].
A cosmological constant Λ is an important candidate for dark energy providing a good explanation
for the current acceleration. But the cosmological constant faces some problems
[5, 6] such as, the mismatch between the expected value of the vacuum energy
density and the energy density of the cosmological constant, and the lock of an
explanation of why densities of dark energy and dark matter are of same order
at present while they evolve in rather different ways. So, as an alternative,
dynamic dark energy models have been proposed and analyzed in the literature,
highlighting the Holographic Dark Energy Models [712], these originate from
the holographic principle in Cosmology [13]. The holographic principle asserts
that the number of relevant degrees of freedom of a system dominated by gravity
must vary along with the area of the surface bounding the system [14].
According to this principle, the vacuum energy density can be bounded [15] as ρx ≤ Mp2L−2,
where ρx is
the dark energy density (the vacuum energy density), Mp is the reduced Planck mass, and L is the size of the region (i.e IR cutoff). This bound implies that, the total energy inside a
region of size L, should not exceed
the mass of a black hole of the same size. From effective quantum field theory,
an effective IR cutoff can saturate the length scale,
so that the dark energy density can be written as [16],
where c is a dimensionless parameter,
and the factor 3 is for mathematical convenience. In the Holographic Ricci Dark
Energy Model, L is given by the
average radius of the Ricci scalar curvature |R|−1/2, so in this case the density of
the Holographic Dark Energy (hereafter, abbreviated as HDE) is ρx ∝ R.
In a
spatially flat Friedmann- Lemaître -Robertson-Walker (FLRW) universe, the Ricci
scalar of the spacetime is given by R = 6(H˙
+ 2H2), where H(t)
= a˙(t)/a(t) is the Hubble expansion rate of the universe in terms of the
scale factor a, where the dot denotes
the derivative with respect to the cosmic time t. In this sense, the authors of reference [7] introduced the
following generalization:
ρx = 3(αH2 + βH˙
) (1)
where α and β are constants to be determined. This
model works fairly well in fitting the observational data, and it is a good
candidate to alleviate the cosmic coincidence problem [811, 17].
Basic
Equations
In the framework of General Relativity we consider a homogeneous,
isotropic and flat universe scenario through the FLRW metric [18] ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θdφ2)] (2)
where (t,r,θ,φ) are comoving coordinates. Friedmanns
equations in this context are written as
3H2 = ρ (3)
2H˙ + 3H2 = −p (4)
where ρ is the
total energy density, p is the total
pressure and 8πG = c = 1 is assumed. Also, the conservation
of the total energy-momentum tensor is given by [18]
ρ˙ + 3H(ρ + p)
= 0 (5)
Holographic
Dark Energy Model
We studied
a scenario that contains baryons, radiation, cold dark matter and HDE, i.e. ρ = ρb + ρr + ρc + ρx and p =
pb + pr + pc +
px. In addition, we
consider a barotropic equation of state for the fluids, pi = ωi ρi with ωb = 0, ωr = 1/3, ωc = 0 and ωx = ω. By including a phenomenological
interaction in the dark sector, we split the conservation equation (5) in the
following equations.
where prime denotes a derivative with respect to lna3 and Γ represents the interaction function between cold dark matter and the
HDE. From Eqs. (1) and (3) we obtain
Given that radiation and baryons are separately
conserved, we have ρr ∝
a−4 and ρb ∝ a−3.
From here it is easy to realize that
On the
other hand, in the study of HDE scenarios usually it is only considered the
dark sector, since these predominate in the current universe. Also, it is
possible to analyze a HDE scenario with two different approaches, the first one
considers a variable state parameter for the HDE or assuming a parameterization
as shown in [11], while the second approach considers an interaction term
between the dark components [8, 12, 19]. We work in the last approach.
For convenience, we denote the energy density of the dark sector as ρd := ρc + ρx. Then, by combining equations (6) - (7) we obtain
where the submipt 0 denotes a current value.
Notice that the Eq. (8) can be easily solve when . In the literature (see [20, 21] and
its references) scenarios have been studied where only the dark components of
the Universe are considered and a phenomenological interaction between them is
included. It is usual to choose scenarios of interaction with a linear term, or
linear combinations of the dark components [22]. For example, terms of
interaction of the form were studied:
among others [20, 21]. Scenarios with linear
interaction of type Γ ∝ ρc and Γ ∝ ρx, are particular cases studied in
[2224]. In the reference [23], the authors studied the interaction between
dark matter and holographic dark energy, with an interaction term of the form Γ ∝ ρ, con ρ = ρx, ρ = ρc and ρ = ρx+ρc, and
obtained a second order differential equation for H. While that in [24], the authors studied the interaction of dark
matter and holographic dark energy with ω = ω(r), where r = ρc/ρx.
Then, they obtained the interaction term Γ = Γ(ρ,ρ), and finally, ρi = ρi(a) and ω = ω(a). It is so that in this
work we consider the following types of linear interactions [2022]:
The energy density of
the dark sector
We can convenient rewrite Eq. (8) as
including the three interaction types of our
interest where the values of the constants b1,
b2, b3 and b4
are shown in Table 1. The general solution of Eq. (9) is:
ρd(a) =
Aa−3 + B a−4 + C1 a3λ1 + C2 a3λ2 (10)
where the
integration constants C1 and
C2 are given by
where H0, Ωc0, and Ωx0 are the current
values of the Hubble parameter, the density parameters for dark matter and HDE
(i.e.) respectively.
The coefficients in eq. (10) are
as well as
The state parameter of the HDE
The state
parameter of the HDE corresponds to the ratio
Using the
expression (7) in Eq. (6), and the linear interactions Γi, we find
where A = (2α − 3β)(A + ρb0), B = 2(α − 2β)(B + ρr0), C1,2 = C1,2(3βλ1,2 + 2α) and the
constant coefficients Di are
shown in table 2.
In the limit to the future, a →
∞, the expression (12) remains as for λ1 > λ2 > 0, while for λ2 > λ1 > 0,
we have
The
coincidence and deceleration parameters
To examine
the problem of cosmological coincidence, we define r ≡ ρc/ρx.
Then, using ρc = ρd − ρx, together with the expression (7), we find
Then, for all our interactions we get
a constant that depends on the
interaction
parameters, where λi = max{λ1,λ2} for λi > 0.
On the other hand, the deceleration
parameter q is a dimensionless
measure of the cosmic acceleration in the evolution of the universe.
It is
defined by [18]. Using (10), we obtain
Given the expressions (12)-(14), hereinafter we
use the following values for the parameters [3]: Ωb0 = 0,0484,
Ωr0 = 1,25 × 10−3,
Ωc0 =
0,258, Ωx0 = 0,692,
H0 = 67,8 km s−1 Mpc−1,
and ωΛCDM = −1.
In addition, (α1,β1) = (−0,0076,0)
and (α2,β2) = (0,0074,0) [20, 21] are considered. It is very
important to emphasize that the interaction models between dark energy and dark
matter [20, 21, 25] are based on the premise that no known symmetry in Nature
prevents or suppresses a non-minimal coupling between these components,
therefore, this possibility should be investigated in the light of
observational data (see, for example [26]). In some classes of these
interaction models, the coincidence problem can be greatly alleviated when
compared to ΛCDM.
Thus, several interaction models have been proposed with both analytical and
numerical solutions [20, 21, 2527].
Note that
in equation (6), Γ > 0 indicates a transfer of dark matter to dark energy and Γ < 0 indicates otherwise. It is so,
that in the Fig. 1, we analyze the behavior of the interaction terms for each
model. It is shown that model 1 and 2 undergo a sign change in that function,
while model 3 does not. The change of sign in the interaction term highlights
the domain of one of the different types of matter in each epoch of evolution
of the universe (fundamentally late universe). Thus, models 1 and 2 are useful
for our study of the evolution of the universe.
Figura 1. Evolution of interaction term without dimensions for
holographic interaction models. The orange, green and brown lines represent
Models 1, 2 and 3, respectively.
In Fig. 2 we show the evolution of the
coincidence and deceleration parameters in term of the redshift z, where a(z) = (1 + z)−1.
The blue line represents ΛCDM, the orange line the model Γ1 with (α,β) = (0,86,0,46) and the green line the model Γ2 with (α,β) = (1,01,0,45).
In the cases shown for the HDE models with interaction Γ1 and Γ2, the problem of cosmological coincidence is
alleviated, given that the coincidence parameter r tend asymptotically to a positive
constant. Besides, we note that the HDE models resemble the ΛCDM model, in the evolution of both
parameters, noting only differences in quickness of falling of deceleration
parameter value. However contrasting this with figure
1, i.e., taking into account the characteristics of interaction model, model 2
is the one that best describes the evolution of the late universe, the last two
stages being dominated by dark components. It goes from a time dominated by
matter (Γ < 0) to a dominated by dark energy (Γ > 0), in our case this dark energy is
of holographic type.
Figura 2. (a) Evolution of coincidence parameter r as a function of redshift z.
(b) Evolution of deceleration parameter q as a function of redshift z. In the
figures, z =0 represents current time.
Final Remarks
A
theoretical model was developed according to the current components of the
Universe, such as baryons, radiation, cold dark dark
and HDE, with interaction in the dark sector, obtaining for the HDE, the
functions ω(z),
r(z)
and q(z). The proposed model was compared graphically with ΛCDM, using referential values for
the HDE parameters and the given interactions.
In the
near future we expect to contrast the present scenarios with the observational
data (SNe Ia, CC, BAO,
CMB), using Bayesian statistics.
Acknowledgments
This research was supported by Universidad del
Bío-Bío through Beca de Postgrado, and research
projects DIUBB 181907 4/R (MC) and GI 172309/C (MC).
Referencias
[1] A. Riess et al., Astron. J. 116, 1009 (1998).
[2] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[3] P. Ade et al., Astron. Astrophys. 594, 63 (2016).
[4] J. Weller and A. Lewis, Mon. Not. Roy. Astron. Soc. 346, 987
[5] B. Copeland et al., Int. J. Mod. Phys. D 15, 1753 (2006).
[6] A. Riess et al., Astrophys. J. 826, 56 (2016).
[7] L. Granda and A. Oliveros, Phys. Lett. B 669, 275 (2008).
[8] C. Gao et al., Phys. Rev. D 79, 043511 (2009).
[9] S. Del Campo et al., Phys. Rev. D 83, 123006 (2011).
[10] S. Lepe and F. Pena, Eur. Phys. J. C 69, 575 (2010).
[11] F. Arevalo et al., Astrophys. Space Sci. 352, 899 (2014).
[12] L. Chimento et al., AIP Conf. Proc. 1471, 39 (2012).
[13] J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[14] G. t Hooft, Conf. Proc. C930308, 284 (1993).
[15] A. Cohen et al., Phys. Rev. Lett. 82, 4971 (1999).
[16] M. Li, Phys. Lett. B 603, 1 (2004).
[17] T. Mathew et al., Int. J. Mod. Phys. D 22, 1350056 (2013).
[18] B. Ryden, Introduction
to Cosmology (Ohio State University Press, 2006).
[19] S. Chattopadhyay and A. Pasqua, Indian J. Phys. 87, 1053
[20] F. Arevalo et al., Eur. Phys. J. C 77, 565 (2017).
[21] A. Cid et al., JCAP 1903, 030 (2019).
[22] M. Cataldo et al., JCAP 1002, 024 (2010).
[23] T.-F. Fu et al., Eur. Phys. J. C72, 1932 (2012).
[24] L. Chimento et al., AIP Conf. Proc. 1471, 39 (2012).
[25] W. Zimdahl and D. Pavon, Phys. Lett. B521, 133 (2001).
[26] B. Wang et al., Rept. Prog. Phys. 79, 096901 (2016).
[27] F. Arevalo et al., Class. Quant. Grav. 29, 235001 (2012).
Referencias
A. Riess et al., Astron. J. 116, 1009 (1998).
S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
P. Ade et al., Astron. Astrophys. 594, 63 (2016).
J. Weller and A. Lewis, Mon. Not. Roy. Astron. Soc. 346, 987 (2003).
B. Copeland et al., Int. J. Mod. Phys. D 15, 1753 (2006).
A. Riess et al., Astrophys. J. 826, 56 (2016).
L. Granda and A. Oliveros, Phys. Lett. B 669, 275 (2008).
C. Gao et al., Phys. Rev. D 79, 043511 (2009).
S. Del Campo et al., Phys. Rev. D 83, 123006 (2011).
S. Lepe and F. Peña, Eur. Phys. J. C 69, 575 (2010).
F. Arevalo et al., Astrophys. Space Sci. 352, 899 (2014).
L. Chimento et al., AIP Conf. Proc. 1471, 39 (2012).
J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
G. 't Hooft, Conf. Proc. C930308, 284 (1993).
A. Cohen et al., Phys. Rev. Lett. 82, 4971 (1999).
M. Li, Phys. Lett. B 603, 1 (2004).
T. Mathew et al., Int. J. Mod. Phys. D 22, 1350056 (2013).
B. Ryden, Introduction to Cosmology (Ohio State University Press, 2006).
S. Chattopadhyay and A. Pasqua, Indian J. Phys. 87, 1053 (2013).
F. Arevalo et al., Eur. Phys. J. C 77, 565 (2017).
A. Cid et al., JCAP 1903, 030 (2019).
M. Cataldo et al., JCAP 1002, 024 (2010).
T.-F. Fu et al., Eur. Phys. J. C72, 1932 (2012).
L. Chimento et al., AIP Conf. Proc. 1471, 39 (2012).
W. Zimdahl and D. Pavon, Phys. Lett. B521, 133 (2001).
B. Wang et al., Rept. Prog. Phys. 79, 096901 (2016).
F. Arevalo et al., Class. Quant. Grav. 29, 235001 (2012).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Carlos Rodriguez-Benites, Manuel Gonzalez-Espinoza, Giovanni Otalora, Manuel Alva-Morales. (2024). Revisiting the dynamics of interacting vector-like dark energy. The European Physical Journal C, 84(3) https://doi.org/10.1140/epjc/s10052-024-12613-z.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 MOMENTO
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons Atribución-SinDerivar 4.0 International que permite la redistribución, comercial o no comercial, siempre y cuando la obra circule íntegra y sin cambios, donde indique su autor y su primera publicación en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada.