Decision Making, Stress Assessed by Physiological Response and Virtual Reality Stimuli
Toma de Decisiones, Estrés Valorado mediante la Respuesta Fisiológica y Estímulos en Realidad Virtual
TOMADA DE DECISÃO, STRESS E REALIDADE VIRTUAL
DOI:
https://doi.org/10.15446/rcp.v29n2.74280Palabras clave:
Decision making, physiological response, virtual reality, stress, risk taking (en)Toma de decisiones, respuesta fisiológica, realidad virtual, estrés, toma de riesgos. (es)
Tomada de decisão, resposta fisiológica, realidade virtual, estresse, risco. (pt)
Descargas
Many decisions must be made under stress; therefore, stress and decision-making are intrinsically related not only at the behavioral level but also at the neural level. Additionally, virtual reality tools have been proposed as a method to induce stress in the laboratory. This review focuses on answering the following research question: Does stress assessed by physiological variables of a subject under virtual reality stimuli increase the chances of error in decision-making? The reviewed studies were consulted in the following databases: PubMed, IEEE Xplore, and Science Direct. The analysis of the consulted literature indicates that the stress induced in the laboratory using virtual reality tools and the physiological response of the central and autonomous nervous system are complementary subjects and allow the design of training and support systems for the decision-making process.
How to cite this article: Mosquera-Dussán, O., Guzmán-Pérez, D., Terán-Ortega, P., García, J., Trujillo-Rojas, C., Zamudio-Palacio, J., & Botero-Rosas, D. (2020). Decision Making, Stress Assessed by Physiological Response and Virtual Reality Stimuli. Revista Colombiana de Psicología, 29(2), 89-103. https://doi.org/10.15446/rcp.v29n2.74280
Muchas decisiones deben tomarse bajo estrés, por lo tanto, el estrés y la toma de decisiones están intrínsecamente relacionados, no solo a nivel conductual sino también a nivel neural. Además, las herramientas de realidad virtual se han propuesto como un método para inducir estrés en el laboratorio. El presente trabajo de revisión temática se centra en responder la siguiente pregunta de investigación: ¿El estrés evaluado mediante variables fisiológicas de un sujeto bajo estímulos de realidad virtual aumenta las posibilidades de error en la toma de decisiones? Los estudios revisados fueron consultados en las siguientes bases de datos: PubMed, IEEE Xplore y Science Direct. El análisis de la literatura consultada indica que el estrés inducido en el laboratorio, por medio de herramientas de realidad virtual, y la respuesta fisiológica del sistema nervioso central y autónomo son temas que se complementan y permiten el diseño de sistemas de soporte y entrenamiento para el proceso de toma de decisiones.
Cómo citar: Mosquera-Dussán, O., Guzmán-Pérez, D., Terán-Ortega, P., García, J., Trujillo-Rojas, C., Zamudio-Palacio, J., & Botero-Rosas, D. (2020). Decision Making, Stress Assessed by Physiological Response and Virtual Reality Stimuli. Revista Colombiana de Psicología, 29(2), 89-103. https://doi.org/10.15446/rcp.v29n2.74280
Referencias
American Psychological Association. (2011). The Impact of Stress. Washington D.C., EU. Retrieved August 15, 2018, from http://www.apa.org/news/press/releases/stress/2011/impact.aspx
Baumgartner, T., Valko, L., Esslen, M., & Jancke, L. (2006). Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an eeg and psychophysiology study. CyberPsychology & Behavior, 9, 30-45.
Ben Zur, H., & Breznitz, S. J. (1981). The effect of time pressure on risky choice behavior. Acta Psychologia, 47(2), 89–104.
Bohemia Interactive Simulations (2018). BISim. Orlando, Florida, EU.: Bohemia Interactive Simulations. Retrieved from https://bisimulations.com/
Botero, D. A., Mondragon, E. J. A., Arango, M. I. M., Mesa, C. L. De, Camero, G., & Barbosa, F. R. (2010). Nueva metodología para probar el sistema nervioso autónomo en individuos hipertensos. Revista Salud Universidad Industrial de Santander, 42. 240-247
Bourne, L. E., & Yaroush, R. A. (2003). Stress and Cognition: A Cognitive Psychological Perspective. Boulder, CO, United States: The NASA Scientific and Technical Information (STI) Program Office.
Bracco, L., Váldez, R., Wakeham, N., & Velázquez, T. (2018). Síndrome de agotamiento profesional y trabajadores penitenciarios peruanos. Una mirada cualitativa a los factores institucionales y sociales. Revista Colombiana de Psicología, 28, 13-28. https://doi.org/10.15446/rcp.v28n1.66056
Brand, M., Labudda, K., & Markowitsch, H. J. (2006). Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Networks: The Official Journal of the International Neural Network Society, 19(8), 1266–1276.
Buchmann, A. F., Laucht, M., Schmid, B., Wiedemann, K., Mann, K., & Zimmermann, U. S. (2010). Cigarette craving increases after a psychosocial stress test and is related to cortisol stress response but not to dependence scores in daily smokers. Journal of Psychopharmacology, 24(2), 247–255.
Cerqueira, J. J., Mailliet, F., Almeida, O. F. X., Jay, T. M., & Sousa, N. (2007). The Prefrontal Cortex as a Key Target of the Maladaptive Response to Stress. Journal of Neuroscience, 27(11), 2781–2787. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 9(1), 30–45.
Deppermann, S., Notzon, S., Kroczek, A., Rosenbaum, D., Haeussinger, F. B., Diemer, J., & Zwanzger, P. (2016). Functional co-activation within the prefrontal cortex supports the maintenance of behavioural performance in fear-relevant situations before an iTBS modulated virtual reality challenge in participants with spider phobia. Behavioural Brain Research, 307, 208–217.
Dreyer, S. L. (2005). Autonomic logistics–an implementation approach. In ieee Autotestcon, 2005. (pp. 181–187).
Egan, D., Brennan, S., Barrett, J., Qiao, Y., Timmerer, C., & Murray, N. (2016). An evaluation of Heart Rate and Electro Dermal Activity as an objective QoE evaluation method for immersive virtual reality environments. In 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), 1–6.
Elmundo.es. (2012). Defensa invierte medio millón de euros en la versión militar del videojuego “ARMA2”. Madrid, España.: El Mundo, Unidad Editorial Información General. Retrieved from http://www.elmundo.es/elmundo/2012/11/24/navegante/1353748913.html
Galvan, A., & McGlennen, K. M. (2012). Daily stress increases risky decision-making in adolescents: a preliminary study. Developmental Psychobiology, 54(4), 433–440.
Hariharan, A., & Adam, M. T. P. (2015). Blended Emotion Detection for Decision Support. ieee Transactions on Human-Machine Systems, 45(4), 510–517.
Hoareau, C., Querrec, R., Buche, C., & Ganier, F., (2017). Evaluation of Internal and External Validity of a Virtual Environment for Learning a Long Procedure. International Journal of Human–Computer Interaction, 33(10), 786-798.
Holper, L., ten Brincke, R. H. W., Wolf, M., & Murphy, R. O. (2014). fnirs derived hemodynamic signals and electrodermal responses in a sequential risk-taking task. Brain Research, 1557, 141–154.
Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience and Biobehavioral Reviews, 35(1), 2–16.
Khan, A. M., & Lawo, M. (2016). Developing a System for Recognizing the Emotional States Using Physiological Devices. In 2016 12th International Conference on Intelligent Environments (IE) (pp. 48–53).
Kroupi, E. (2013). Phase-Amplitude Coupling between eeg and eda while experiencing multimedia content. In Conference on Affective Computing and Intelligent Interaction (ACII), 865-870.
Lackey, S., Salcedo, J., Szalma, J., & Hancock, P. (2016). The stress and workload of virtual reality training: the effects of presence, immersion and flow. Ergonomics, 59(8), 1060-1072.
Lemmens, S. G., Rutters, F., Born, J. M., & Westerterp- Plantenga, M. S. (2011). Stress augments food ‘wanting’ and energy intake in visceral overweight subjects in the absence of hunger. Physiology & Behavior, 103(2), 157–163.
Lenow, J. K., Constantino, S. M., Daw, N. D., & Phelps, E. A. (2017). Chronic and Acute Stress Promote Overexploitation in Serial Decision Making. The Journal of Neuroscience, 37(23), 5681-5689.
León-Ariza, H. H., Botero-Rosas, D. A., Sánchez-Jiménez, A., Ramírez-Villada, J. F., Acero-Mondragón, E. J., & Acero-Mondragón, E. J. (2017). Cognición, respuesta electroencefalográfica y su relación con la variabilidad de la frecuencia cardíaca. Revista de La Facultad de Medicina Universidad Nacional, 65(1), 67–72.
Lighthall, N. R., Mather, M., & Gorlick, M. A. (2009). Acute Stress Increases Sex Differences in Risk Seeking in the Balloon Analogue Risk Task. PLoS ONE, 4(7), e6002.
Lo, A. W., & Repin, D. V. (2002). The psychophysiology of real-time financial risk processing. Journal of Cognitive Neuroscience, 14(3), 323–339.
Lupien, S. J., Maheu, F., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65(3), 209–237.
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2010). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445.
Luu, S., Patel, P., St-Martin, L., Leung, A. S., Regehr, G., Murnaghan, M. L., & Moulton, C.-A. (2012). Waking up the next morning: surgeons’ emotional reactions to adverse events. Medical Education, 46(12), 1179–1188.
Mather, M., & Lighthall, N. R. (2012). Both Risk and Reward are Processed Differently in Decisions Made Under Stress. Current Directions in Psychological Science, 21(2), 36–41.
McEwen, B. S. (2000). The neurobiology of stress: from serendipity to clinical relevance. Brain Research, 886(1–2), 172–189.
McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583(2–3), 174–185.
McEwen, B. S., & Gianaros, P. J. (2011). Stress- and Allostasis-Induced Brain Plasticity. Annual Review of Medicine, 62, 431-45.
Meehan, M., Insko, B., Whitton, M., & Brooks Jr., F. P. (2002). Physiological Measures of Presence in Stressful Virtual Environments. ACM Trans. Graph., 21(3), 645–652.
Moses, A., Obenschain, K., Boris, J., & Patnaik, G. (2015). Using real-time chemical plume models in virtual training systems. In 2015 ieee International Symposium on Technologies for Homeland Security (HST), 1–6.
Mosquera-Dussán, O. L., Botero-Rosas, D. A., Cagy, M., & Henao-Idarraga, R. D. (2015). Nonlinear analysis of the electroencephalogram in depth of anesthesia. Revista Facultad de Ingeniería Universidad de Antioquia, 75, 45-56.
Mracek, D. L., Arsenault, M. L., Anthony Day, E., Hardy III, J. H., & Terry, R. A. (2014). A Multilevel Approach to Relating Subjective Workload to Performance After Shifts in Task Demand. Human Factors: The Journal of the Human Factors and Ergonomics Society, 56(8), 1401-1413.
Mu, Z., & Tan, Z. (2017). Analysis & Design of Fire Protection & Rescue Training Emulation System Based on Virtual Reality. In 2017 International Conference on Robots & Intelligent System (ICRIS), 28–31.
Navarro-Haro, M. V., López-del-Hoyo, Y., Campos, D., Linehan, M. M., Hoffman, H. G., García-Palacios, A., & García-Campayo, J. (2017). Meditation experts try Virtual Reality Mindfulness: A pilot study evaluation of the feasibility and acceptability of Virtual Reality to facilitate mindfulness practice in people attending a Mindfulness conference. PLOS ONE, 12(11), e0187777.
Osumi, T., & Ohira, H. (2009). Cardiac responses predict decisions: an investigation of the relation between orienting response and decisions in the ultimatum game. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 74(1), 74–79.
Peñasco-Martín, B., de los Reyes-Guzmán, A., Gil-Agudo, Á., Bernal-Sahún, A., Pérez-Aguilar, B., & de la Peña-González, A. I. (2010). Application of virtual reality in the motor aspects of neurorehabilitation. Revista de Neurología, 51(8), 481 -488.
Porcelli, A. J., & Delgado, M. R. (2009). Acute stress modulates risk taking in financial decision making. Psychological Science, 20(3), 278–283.
Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of valuebased decision making. Nature Reviews Neuroscience, 9, 545–556.
Ríos, A., Bonet, C., Morales, J. L., Alavedra, A., París, A., & Guillén, M. (2017). Fireman Rescue: A Serious Game for Fire Fighting Training. In Spanish Computer Graphics Conference (CEIG), 1-4.
Rush, A. J., Beck, A. T., Kovacs, M., & Hollon, S. (1977). Comparative efficacy of cognitive therapy and pharmacotherapy in the treatment of depressed outpatients. Cognitive Therapy and Research, 1(1), 17–37.
Salvia, E., Guillot, A., & Collet, C. (2012). Autonomic nervous system correlates to readiness state and negative outcome during visual discrimination tasks. International Journal of Psychophysiology, 84(2), 211–218.
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual review of clinical psychology, 1, 607–628.
Shih, V., Zhang, L., Kothe, C., Makeig, S., & Sajda, P. (2016). Predicting decision accuracy and certainty in complex brain-machine interactions. In 2016 ieee International Conference on Systems, Man, and Cybernetics (SMC), 4076–4081.
Sousa, N., Lukoyanov, N. V, Madeira, M. D., Almeida, O. F., & Paula-Barbosa, M. M. (2000). Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 97(2), 253–266.
Starcke, K., & Brand, M. (2012). Decision making under stress: A selective review. Neuroscience & Biobehavioral Reviews, 36(4), 1228–1248.
Tepljakov, A., Astapov, S., Petlenkov, E., Vassiljeva, K., & Draheim, D. (2016). Sound localization and processing for inducing synesthetic experiences in Virtual Reality. In 2016 15th Biennial Baltic Electronics Conference (BEC), 159–162.
Thomas, S. E., Bacon, A. K., Randall, P. K., Brady, K. T., & See, R. E. (2011). An acute psychosocial stressor increases drinking in non-treatment-seeking alcoholics. Psychopharmacology, 218(1), 19–28.
Uy, J. P., & Galvan, A. (2017). Sleep duration moderates the association between insula activation and risky decisions under stress in adolescents and adults. Neuropsychologia, 95, 119–129.
Valeriani, D., Poli, R., & Cinel, C. (2015). A collaborative Brain-Computer Interface for improving group detection of visual targets in complex natural environments. In 2015 7th International ieee/EMBS Conference on Neural Engineering (NER), 25–28.
Van den Bos, R., Harteveld, M., & Stoop, H. (2009). Stress and decision-making in humans: performance is related to cortisol reactivity, albeit differently in men and women. Psychoneuroendocrinology, 34(10), 1449–1458.
Vázquez-Mata, G. (2008). Realidad virtual y simulación en el entrenamiento de los estudiantes de medicina. Educación Médica, 11(1), 29-31.
Wang, J., Korczykowski, M., Rao, H., Fan, Y., Pluta, J., Gur, R. C., & Detre, J. A. (2007). Gender difference in neural response to psychological stress. Social cognitive and affective neuroscience, 2(3), 227–239.
Wang, R., Shen, Y., Tino, P., Welchman, A. E., & Kourtzi, Z. (2017). Learning Predictive Statistics: Strategies and Brain Mechanisms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(35), 8412–8427.
Watanabe, N., Bhanji, J. P., Ohira, H., & Delgado, M. R. (2019). Reward-Driven Arousal Impacts Preparation to Perform a Task via Amygdala–Caudate Mechanisms. Cerebral Cortex, 29(7), 3010–3022.
Wolf, O. T. (2009). Stress and memory in humans: twelve years of progress? Brain Research, 1293, 142–154.
Wu, G., Zhang, J., & Gonzalez, R. (2004). Decision Under Risk. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (p. 399–423). Hoboken, Nueva Jersey, Estados Unidos: Blackwell Publishing.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. David Güemes-Castorena, Mauricio Hincapié-Montoya, Christian Andrés Díaz-León, Armando Elizondo-Noriega, Sofía Pamela Recinos Dorst. (2024). Interactive and Immersive Media for Training in Decision-Making: A Literature Review. 2024 Portland International Conference on Management of Engineering and Technology (PICMET). , p.1. https://doi.org/10.23919/PICMET64035.2024.10653321.
2. Romel Ramón González-Díaz. (2022). Perspectives and Trends in Education and Technology. Smart Innovation, Systems and Technologies. 256, p.1. https://doi.org/10.1007/978-981-16-5063-5_1.
3. M. Masullo, R. A. Toma, A. Pascale, G. Ruggiero, L. Maffei. (2021). Proceedings of the 8th International Ergonomics Conference. Advances in Intelligent Systems and Computing. 1313, p.223. https://doi.org/10.1007/978-3-030-66937-9_25.
4. Paula Fernanda Pérez Rivero, Ismael Leonardo Mieles Toloza. (2023). Modelos neuroeconómicos explicativos de la relación entre aversión al riesgo, impulsividad y cardiocepción en estudiantes universitarios: revisión de alcance. Revista Médicas UIS, 36(1) https://doi.org/10.18273/revmed.v36n1-2023006.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista Colombiana de PsicologíaTodo el contenido de esta revista cuenta con una licencia Creative Commons “Reconocimiento, No comercial y Sin obras derivadas” Internacional 4.0. Sin embargo, si el autor desea obtener el permiso de reproducción, se evaluará cualquier solicitud de su parte.