Publicado
Kollicoat MAE® 100P as a film former polymer for nanoparticles preparation
Kollicoat MAE® 100P como polímero formador de película para la preparación de nanopartículas
Kollicoat MAE® 100P como polímero formador de filme para a preparação de nanopartículas
DOI:
https://doi.org/10.15446/rcciquifa.v51n3.100424Palabras clave:
Kollicoat, nanoparticles, acrylates, gastroresistant (en)Kollicoat, nanopartículas, acrilatos, gastrorresistente (es)
Kollicoat, nanopartículas, acrilatos, gastrorresistente (pt)
Descargas
Introduction: Until now, few research works have reported the usefulness of Kollicoat MAE® 100P as a film-former polymer for coating nanocapsules and as a matrix former for nanospheres. Aim: To update the current knowledge about the use of Kollicoat MAE® 100P as a film-former polymeric to prepare gastro-resistant nanoparticles. Physicochemical characteristics and functionality of nanoparticles coated with Kollicoat MAE® 100P were reported. Methodology: An exhaustive review was performed (from 1980 to 2021) in various scientific databases like Medline, Scopus, EBSCO and Cambridge. Results: Kollicoat MAE® 100P is a versatile polymer that can be used to prepare gastro-resistant nanoparticles with actives of natural and synthetic origin. This polymer allows producing homogeneous nanoparticles with sizes smaller than 130 nm, and high z-potential, which confers a great stability to nanoparticle systems. On the other side, nanoparticles coated with Kollicoat MAE® 100P combined with plasticizer exhibit a hard and flexible shell, with excellent thermal stability up to 60 °C that dissolve at pH above 5.5. Conclusion: Kollicoat MAE® 100P ris a viable, low-cost, and multifunctional alternative for nanoparticle preparation, however, more studies are needed to develop enhanced nanoparticles with better performances.
Introducción: hasta ahora, pocos trabajos de investigaciones han relatado la utilidad de Kollicoat MAE® 100P como polímero formador de película para el recubrimiento de nanocápsulas y como formador de matriz para preparar nanoesferas. Objetivo:actualizar el estado del conocimiento sobre las características fisicoquímicas de Kollicoat MAE® 100P, su uso como material formador de películas de cubierta para preparación de nanopartículas gastrorresistentes, y la funcionalidad de las nanopartículas preparadas con este polímero. Metodologia: se realizó una revisión exhaustiva (de 1980 a 2021) en varias bases de datos como Medline, Scopus, EBSCO y Cambridge. Resultados: Kollicoat MAE® 100P es un polímero versátil que puede utilizarse para la preparación de nanopartículas gastrorresistentes usando activos naturales y sintéticos. Este polímero produce nanopartículas menores que 130 nm, bajo índice de polidispersión y potencial z relativamente altos, lo que confiere gran estabilidad a formulaciones de nanopartículas. El Kollicoat MAE® 100P, combinado con un plastificante adecuado, produce una cubierta dura y flexible, con excelente estabilidad térmica a temperaturas hasta 60 °C que se disuelve a pH mayores que 5,5. Conclusión: Kollicoat MAE® 100P es un polímero multifuncional, de bajo costo útil para preparar nanopartículas gastroresistentes. Sin embargo, podrían realizarse otros estudios para desarrollar nanopartículas con mejor funcionalidad.
Referencias
G.K. Zorzi, E.L.S. Carvalho, G.L. Von Poser, H.F. Teixeira, On the use of nanotechnology-based strategies for association of complex matrices from plant extracts, Rev. Bras. Farmacogn., 25, 426-436 (2015). Doi:10.1016/j. bjp.2015.07.015
I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications, and toxicities. Arab. J. Chem., 12, 908-931 (2019). Doi:10.1016/j.arabjc.2017.05.011
S.S. Shelake, S.V. Patil, S.S. Patil, Formulation and evaluation of fenofibrate- loaded nanoparticles by precipitation method, Indian. J. Pharm. Sci., 80, 420-427 (2018). Doi:10.4172/pharmaceutical-sciences.1000374
J. Bajdik, K. Pintye-Hodi, Study of deformation process of stored polymethacrylate free film, Pharmazie, 61, 887-888 (2006).
C.E. Mora, H. Fessi, A Elaissari, Polymer-based nanocapsules for drug delivery, Int. J. Pharm., 385, 113-142 (2010). Doi:10.1016/j.ijpharm.2009.10.018
G.D. Quintanar, E. Allemann, H. Fessi, E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers, Drug. Dev. Ind. Pharm., 24, 1113-1128 (1998). Doi:10.3109/03639049809108571
S.R. Schaffazick, S.S. Guterres, L.L. Freitas, A.R. Pohlmann, Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos, Quim. Nova, 26, 726-737 (2013). Doi:10.1590/ S0100-40422003000500017
A.L. Prada, A.P.R. Bitencourt, A.J.R. Rodriguez, R.A.S. Cruz, J.C.T. Carvalho, Fernandes, Development and characterization of Cassia grandis and Bixa orellana nanoformulations, Curr. Top. Med. Chem., 16, 2057-2065 (2016). Doi:10. 2174/1568026616666160215161103
A.J.R. Rodriguez, A.L. Prada, J.L. Duarte, H. Keita, H.R. da Silva, A.M. Ferreira, et al., Development, stability and in vitro delivery profile of new loratadine-loaded nanoparticles, Saudi Pharm. J., 25, 1158-1168 (2017). Doi:10.1016/j.jsps.2017.07.008
W. Mehnert, K. Mäder, Solid lipid nanoparticles: Production, characterization and applications, Adv. Drug Deliv., 47, 165-196 (2001). Doi:10.1016/S0169- 409X(01)00105-3
I. Meerovich, A.K. Dash, Polymersomes for drug delivery and other biomedical applications, in: A.-M. Holban, A. Mihai-Grumezescu (editors), Materials for Biomedical Engineering: Organic Micro and Nanostructures, Elsevier, 2019, pp. 269-309. Doi:10.1016/B978-0-12-818433-2.00008-X
S.R. Schaffazick, A.R. Pohlmann, S.S. Guterres, Nanocapsules, nanoemulsion and nanodispersion containing melatonin: Preparation, characterization and stability evaluation, Pharmazie, 62, 354-360 (2007).
V. Bühle, Kollicoat grades. “Functional polymers for the pharmaceutical industry”. BASF, Pharma Solutions, Aktiengesellschaft, 2007, v. 67056.
Pharma Ingredients & Services Kollicoat ® MAE grades ®-Registered trademark of BASF group Methacrylic acid/ethyl acrylate copolymers for enteric coatings, 2010. URL: https://worldaccount.basf.co
BASF, Technical information, Methacrylic acids/ethyl acrylates copolymer for enteric coating. Kollicoat MAE® 100P. Pharma Ingredients and service. BASF SE, BASF, Limburgerhof: The chemical company, 2019.
C. Corell, F. Bang, T. Cech, M. Haberecht, K. Mäder, Investigating the effect of partial neutralisation of the polymer on the dissolution characteristics of poly (methacrylic acid-co-ethyl acrylate) based coats, Abstract in: 11th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology; March 19-22, 2018, Granada, Spain.
A.L. Felton, Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, CRC Press, Boca Raton (FL), 2007.
P.A. Lafourcade, L.D.R. Achod, H. Keita, J.C.T. Carvalho, T.P. de Souza, A.J.R. Rodríguez, Development, pharmacological and toxicological evaluation of a new tablet formulation based on Cassia grandis fruit extract, Sustain. Chem. Pharm., 16, 100244 (2020). Doi:10.1016/j.scp.2020.100244
A.L. Prada, H. Keita, T.P. de Souza, E.S. Lima, L.D.R. Acho, M.J.A. da Silva, et al., Cassia grandis Lf nanodispersion is a hypoglycemic product with a potent α-glucosidase and pancreatic lipase inhibitor effect, Saudi Pharm. J., 27, 191-199 (2019). Doi:10.1016/j.jsps.2018.10.003
M. Hossain, R. Jalil, S. Reza, M. Quadir, C. Hossain, Evaluation of Kollicoat SR 30D and Kollicoat EMM 30D as matrix former for controlled release drug delivery, Dhaka Univ. J. Pharm. Sci., 4, 1 (2005). Doi:10.3329/dujps.v4i1.202
United States Pharmacopeia and National Formulary (USP 41-NF 36), United States Pharmacopeial Convention; 2016, URL: https://online.uspnf.com/uspnf/document/GUID-AC788D41-90A2-4F36-A6E7-769954A9ED09_1_ en-US. Accessed: January 18, 2019.
European Pharmacopoeia. Strasbourg: Council of Europe, 2018.
H. Fessi, F. Puisieux, J.P. Devissaguet, N. Ammoury, S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm., 55, R1-R4, (1989). Doi:10.1016/0378-5173(89)90281-0
F.S. Neto, S.T. Pereira, A.J.R. Rodriguez, P.A. Lafourcade, Sistemas poliméricos nanodispersos obtidos por encapsulação de a ß-Amirina: Processo tecnológico e utilidade farmacológica, Patent BR 10 2020 008802 5, INPI, Brazil.
A.L. Prada, A.J.R. Rodríguez, H. Keita, E.P. Zapata, H. Carvalho, E.S. Lima, et al., Cassia grandis fruit extract reduces the blood glucose level in alloxan-induced diabetic rats, Biomed. Pharmacother., 103, 421-428 (2018). Doi:10.1016/j.biopha. 2018.04.059
A.L. Barbosa, N.M. Silva-Barcellos, B.K. Rezende, E.L. de Silveira, J. de Souza, Biopharmaceutics classification system: importance and inclusion in biowaiver guidance, Braz. J. Pharm. Sci., 51, 143-155 (2015). Doi:10.1590/S1984- 82502015000100015
H. Kranz, S. Gutsche, Evaluation of the drug release patterns and long-term stability of aqueous and organic coated pellets by using blends of enteric and gastrointestinal insoluble polymers, Int. J. Pharm., 380, 112-119 (2009). Doi:10.1016/j.ijpharm.2009.07.013
M.A.A. Maki, M. Elumalai, H.N. Ahamed, P.V. Kumar, Design a lymphatic specific delivery system of rHuKGF in rat and assessment of intestinal lymphatic uptake, Biomed. Eng. Int., 2, 0066-0074 (2020). Doi:10.33263/ BioMed22.066074
O. R. Guadarrama-Escobar, I. Sánchez-Vázquez, P. Serrano-Castañeda, G. A. Chamorro-Cevallos, I.M. Rodríguez-Cruz, A.Y. Sánchez-Padrón, J.J. Escobar- Chávez, Development, characterization, optimization, and in vivo evaluation of methacrylic acid–ethyl acrylate copolymer nanoparticles loaded with glibenclamide in diabetic rats for oral administration, Pharmaceutics, 13, 2023 (2021). Doi:10.3390/pharmaceutics13122023
O.V. Zhukova, E.V. Arkhipova, T.F. Kovaleva, S.A. Ryabov, I.P. Ivanova, A.A. Golovacheva, D.A. Zykova, S.D. Zaitsev, Immunopharmacological properties of methacrylic acid polymers as potential polymeric carrier constituents of anticancer drugs, Molecules, 26, 4855 (2021). Doi:10.3390/molecules26164855.
S. Fernández, J. Castaño, Y. Pino, E. Uribarri, L. A. Riverón, B. Cedré, A. Talavera, Evaluation of enteric-coated tablets as a whole cell inactivated vaccine candidate against Vibrio cholera, Travel Med. Infect. Dis., 11, 103-109 (2013). Doi:10.1016/j.tmaid.2012.10.006
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Prajila Alayadan, Avichal Kumar, Sanjana S. Prakash, Babiker Bashir, V. Bhagya, S. Narasimha Murthy, H. N. Shivakumar. (2025). Development, in vitro and in vivo evaluation of film forming solutions for transdermal drug delivery of Zaltoprofen . Journal of Biomaterials Science, Polymer Edition, 36(9), p.1265. https://doi.org/10.1080/09205063.2024.2443332.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




