Publicado

2022-07-07

Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases

Extracción y cuantificación de ácido oxálico en hojas de especies vegetales utilizadas en el tratamiento de enfermedades crónicas no transmisibles

Extração e quantificação de ácido oxálico em folhas de espécies vegetais utilizadas no tratamento de doenças crônicas não transmissíveis

DOI:

https://doi.org/10.15446/rcciquifa.v51n1.102607

Palabras clave:

calcium oxalete, urinary lithiasis, plant species (en)
Oxalato de calcio, litiasis urinaria, vegetales especies (es)
Oxalato de cálcio, litíase urinária, espécies vegetais (pt)

Autores/as

  • José Odimar de Caldas Brandão Filho Programa de Pósgraduação em Inovação Terapêutica (PPGIT), Universidade Federal de Pernambuco, Recife-PE, Brazil, 50670-420
  • José Pedro Martins Barbosa Filho Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife-PE, Brazil, 50740-521.
  • Rafaela Damasceno Sá Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife-PE, Brazil, 50740-521
  • Karina Perrelli Randau Programa de Pósgraduação em Inovação Terapêutica (PPGIT) e Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife-PE, Brazil, 50740-521

Introduction: Chronic non-communicable diseases (CNCDs) are a group of diseases characterized by having the highest mortality and morbidity rates in the world. Despite the increase in new drug technologies, the use of medicinal plants as an aid in therapy for these diseases is a widespread reality. However, most plant species contain inorganic crystals of calcium oxalate, a product of plant metabolism, which has several functions in plant tissues. For the human species, its ingestion is associated with the arising of kidney problems such as urinary lithiasis, especially in people who have a predisposition to these conditions. Aim: To determine the amount of oxalic acid in plant species, which are used in the treatment of CNCDs. Methodology: After collection and characterization the plant species, aqueous and acidic extracts were obtained from 0.5 g of the plant drug of each species and, subsequently, were titrated with a standardized 0.02 mol.L-1 potassium permanganate solution and the concentrations of oxalic acid were expressed in g/100 g of dry vegetable drug. Result: The data obtained from the concentration of oxalic acid ranged from 4.58 ± 0.09 g/100 g to 17.21 ± 0.07 g/100 g and demonstrated that the concentrations from acid extraction are higher compared to the aqueous extraction, for all vegetables species analyzed. Methodological optimization was performed for the species that showed the highest results, Psidium guajava and Artocarpus heterophyllus. Conclusion: The data obtained can serve as input for medical decisions and for professionals who prescribe medicinal plants.

Introducción: las enfermedades crónicas no transmisibles (ECNT) tienen las tasas de mortalidad y morbilidad más altas del mundo. El uso de plantas medicinales en la terapia de estas enfermedades es una realidad muy extendida. Sin embargo, la mayoría de las especies vegetales contienen cristales de oxalato cálcico, producto del metabolismo  vegetal y su ingesta se correlaciona con la aparición de problemas renales como la litiasis urinaria, especialmente en personas predispuestas a estas afecciones. Objetivo: determinar la cantidad de ácido oxálico en especies vegetales que se utilizan en el tratamiento de las ECNT. Metodología: se obtuvieron extractos acuosos y ácidos de 0,5 g del fármaco vegetal de la especie y, posteriormente, se tituló con una solución estandarizada de permanganato de potasio 0,02 mol.L-1con las concentraciones de ácido oxálico expresadas en g/100g de fármaco vegetal seco. Resultados: la concentración de ácido oxálico osciló entre 4,58 ± 0,09 g/100 g a 17,21 ± 0,07 g/100 g en especies de plantas y la extracción de ácido fue más eficiente. Se realizó una optimización metodológica para las especies que presentaron los mejores resultados, Psidium guajava y Artocarpus heterophyllus. Conclusión: los datos obtenidos pueden servir de base para decisiones médicas y para profesionales que prescriben plantas medicinales.

Introdução: as doenças crônicas não transmissíveis (DCNT) são um grupo de doenças caracterizadas por apresentar as maiores taxas de mortalidade e morbidade do mundo. Apesar do aumento de novas tecnologias medicamentosas, o uso de plantas medicinais como auxiliar na terapia dessas doenças é uma realidade bastante difundida. No entanto, a maioria das espécies vegetais contém cristais inorgânicos de oxalato de cálcio, um produto do metabolismo vegetal, que possui diversas funções nos tecidos vegetais. Para a espécie humana, sua ingestão está associada ao surgimento de problemas renais como a litíase urinária, principalmente em pessoas com predisposição a essas condições. Objetivo: determinar a quantidade de ácido oxálico em espécies vegetais, que são utilizadas no tratamento de DCNT. Metodologia: após a coleta e caracterização das espécies vegetais, extratos aquosos e ácidos foram obtidos a partir de 0,5 g da droga vegetal de cada espécie e, posteriormente, titulados com solução padronizada de permanganato de potássio 0,02 mol.L-1 e as concentrações de ácido oxálico foram expressos em g/100 g de fármaco vegetal seco. Resultado: os dados obtidos da concentração de ácido oxálico variaram de 4,58 ± 0,09 g/100 g a 17,21 ± 0,07 g/100 g e demonstraram que as concentrações da extração ácida são maiores em relação à extração aquosa, para todas as espécies vegetais analisadas. A otimização metodológica foi realizada para as espécies que apresentaram os maiores resultados, Psidium guajava e Artocarpus heterophyllus. Conclusão: os dados obtidos podem servir de subsídio para decisões médicas e para profissionais que prescrevem plantas medicinais.

Referencias

World Health Organization (WHO), General meeting of the WHO global coordination mechanism on the prevention and control of noncommunicable diseases, Geneva-Switzerland, URL: https://apps.who.int/iris/handle/10665/310961, accessed in January 2021.

D.A. Ribeiro, D.G. Macêdo, L.G.S. Oliveira, M.E. Saraiva, S.F. Oliveira, M.M.A. Souza, I.R.A. Menezes, Potencial terapêutico e uso de plantas medicinais em uma área de Caatinga no estado do Ceará, nordeste do Brasil, Rev. Bras. Plantas Med., 16(4), 912-930 (2014).

F.L. Pereira, J.M. Fernandes, J.P.V. Leite, Ethnopharmacological survey: A selection strategy to identify medicinal plants for a local phytotherapy program, Braz. J. Pharm. Sci., 48(2), 299-313 (2012).

C.G. Silva, M.G.V. Marinho, M.F.A. Lucena, J.G.M. Costa, Levantamento etnobotânico de plantas medicinais em área de Caatinga na comunidade do sítio Nazaré, município de Milagres, Ceará, Brasil, Rev. Bras. Plantas Med., 17(1), 133-142 (2015).

Y.S. Jaiswal, P.A. Tatke, S.Y. Gabhe, A.B. Vaidya, Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n streptozotocin diabetic rats, J. Trad. Comp. Med., 7(4), 421-427 (2017).

P.D.N. Lotulung, T. Mozef, C. Risdian, A. Darmawan, In vitro antidiabetic activities of extract and isolated flavonoid compounds from Artocarpus altilis (Parkinson) Fosberg, Indo. J. Chem., 14(1), 7-11 (2014).

H.S. Omar, H.A. El-Beshbishy, Z. Moussa, K.F. Taha, A.N.B. Singab, Antioxidant activity of Artocarpus heterophyllus Lam. (Jack Fruit) leaf extracts: Remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin- diabetic rats, Scientific World Journal, 1, 788-800 (2011).

S. Jia, Y. Hu, W. Zhang, X. Zhao, Y. Chen, C. Sun, X. Li, K. Chen, Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-Ay mice, Food Funct., 6(3), 878-886 (2015).

J.D. Toscano-Garibay, M. Arriaga-Alba, J. Sánchez-Navarrete, M. Mendoza- García, J.J. Flores-Estrada, M.A. Moreno-Eutimio, J.J. Espinosa-Aguirre, M. González-Ávila, N.J. Ruiz-Pérez, Antimutagenic and antioxidant activity of the essential oils of Citrus sinensis and Citrus latifolia, Sci. Rep., 7(1), 1-9 (2017).

N.M. Fayek, A.R.A. Monem, M.Y. Mossa, M.R. Meselhy, A.H. Shazly, Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt, Pharmacognosy Res., 4(2), 85-91 (2012).

C.R. Lima, C.F. Vasconcelos, J.H. Costa-Silva, C.A. Maranhão, J. Costa, T.M. Batista, E.M. Carneiro, L.A.L. Soares, F. Ferreira, A.G. Wanderley, Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats, J. Ethnopharmacol., 141(1), 517-525 (2012).

A.O. Ademiluyi, G. Oboh, O.B. Ogunsuyi, F.M. Oloruntoba, A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties, Comp. Clin. Pathol., 25(2), 363-374 (2016).

M.E. Goodies, I.E. Emmanuel, O.J. Matthew, E.J.O. Tedwins, A.D. Lotanna, E.O. Earnest, C. Paul, A. Ejiroghene, Antidiabetic activity and toxicity evaluation of aqueous extracts of Spondias mombin and Costus afer on Wistar rats, J. Pharm. Res. Int., 6(5), 333-342 (2015).

I.A. Neri-Numa, L.B. Carvalho-Silva, J.E.M. Ferreira, A.R.T. Machado, L.G. Malta, A.L.T.G. Ruiz, J.E. Carvalho, G.M. Pastore, Preliminary evaluation of antioxidant, antiproliferative and antimutagenic activities of pitomba (Talisia esculenta), LTW-Food Sci. Technol., 59(2), 1233-1238 (2014).

S.S. Bhadoriya, A. Ganeshpurkar, R.P.S. Bhadoriya, S.K. Sahu, J.R. Patel, Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats, J. Basic Clin. Physiol. Pharmacol., 29(1), 37-45 (2018).

V.R. Franceschi, P.A. Nakata, Calcium oxalate in plants: formation and function, Annu. Rev. Plant. Biol., 56(1), 41-71 (2005).

R. Siener, R. Hönow, A. Seidler, S. Voss, A. Hesse, Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem., 98, 220-224 (2006).

J. Huang, C. Huang, M. Liebman, Oxalate contents of commonly used Chinese medicinal herbs, J. Tradit. Chin. Med., 35(5), 594-599 (2015).

J. Ihli, Y.W. Wang, B. Cantaert, Y.Y. Kim, D.C. Green, P.H.H. Bomans, N.A.J.M. Sommerdijk, F.C. Meldrum, Precipitation of amorphous calcium oxalate in aqueous solution, Chem. Mater., 27(11), 3999-4007 (2015).

R.D. Sá, A.S.C.O. Santana, R.J.R. Padilha, L.C. Alves, K.P. Randau, Oxalic acid content and pharmacobotany study of the leaf blades of two species of Annona (Annonaceae), Flora, 253, 10-16 (2019).

R.D. Sá, A.S.C.O. Santana, K.P. Randau, Caracterização anatômica e histoquímica das folhas de Eugenia uniflora L., J. Environm. Anal. Progress, 1(1), 96-105 (2016).

D.M.F. Souza, R.D. Sá, E.L. Araújo, K.P. Randau, Anatomical, phytochemical and histochemical study of Solidago chilensis Meyen, Anal. Acad. Bras. Cienc., 90(2), 2107-2120 (2018).

R.D. Sá, A.S.C.O. Santana, F.C.L. Silva, L.A.L. Soares, K.P. Randau, Anatomical and histochemical analysis of Dypshania ambrosioides supported by light electron microscopy, Rev. Bras. Farmacogn., 26(5), 533-543 (2016).

I.A. Al-Wahsh, Y. Wu, M. Liebman, Comparison of two extraction methods for food oxalate assessment, J. Food Res., 1(2), 233-239 (2012).

X. Duan, Z. Kong, X. Mai, Y. Lan, Y. Liu, Z. Yang, Z. Zhao, T. Deng, T. Zeng, C. Cai, S. Li, W. Zhong, W. Wu, G. Zeng, Redox Biology Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney, Redox Biol., 16, 414-425 (2018).}

R.A. Abeysekera, S. Wijetunge, N. Nanayakkara, A.W.M. Wazil, N.V.I. Ratnatunga, T. Jayalath, A. Medagama, Star fruit toxicity: a cause of both acute kidney injury and chronic kidney disease: a report of two cases, BMC Res. Notes., 8(1), 1-4 (2015).

S. Marques, S. Santos, K. Fremin, A.B. Fogo, Teaching case a case of oxalate nephropathy: When a single cause is not crystal clear, Am. J. Kidney Dis., 70(5), 722-724 (2017).

M.A. Cameron, N.M. Maalouf, B. Adams-Huet, O.W. Moe, K. Sakhaee, Urine composition in type 2 diabetes: Predisposition to uric acid nephrolithiasis, J. Am. Soc. Nephrol., 17(5), 1422-1428 (2006).

E. Mazzucchi, M. Srougi, O que há de novo no diagnóstico e tratamento da litíase urinária?, Rev. Assoc. Med. Bras., 55(6), 723-728 (2009).

C. Boyd, K. Wood, D. Whitaker, D.G. Assimos, The influence of metabolic syndrome and its components on the development of nephrolithiasis, Asian. J. Urol., 5(4), 1-7 (2018).

M. Bahmani, H. Golshahi, K. Saki, M. Rafieian-Kopaei, B. Delfan, T. Mohammadi, Medicinal plants and secondary metabolites for diabetes mellitus control, Asian Pac. J. Trop. Dis., 4(2), S687-S692 (2014).

A.L.B. Zeni, A.V. Parisotto, G. Mattos, E.T.S Helena, Utilização de plantas medicinais como remédio caseiro na Atenção Primária em Blumenau, Santa Catarina, Brasil, Cien. Saude Colet., 22(8), 2703-2712 (2017).

S.L. Cartaxo, M.M.A. Souza, U.P. Albuquerque, Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil, J. Ethnopharmacol., 131, 326-342 (2010).

M.G. V. Marinho, C.C. Silva, L.H.C. Andrade, Levantamento etnobotânico de plantas medicinais em área de caatinga no município de São José de Espinharas, Paraíba, Brasil, Rev. Bras. Plantas Med., 13(2), 170-182 (2011).

W.A. Pereira, N.L.R. Cutrim, T.S. Reis, P.H.P. Almeida, E.A.P. Motta, Estudo do consumo de plantas medicinais obtidas em feiras livres de São Luís, para o tratamento de doenças crônicas, Rev. Ceuma Perspectivas, 30(1), 172-179 (2017).

Agência Nacional de Vigilância Sanitária (Anvisa), Resolução da Diretoria Colegiada, RDC Nº 166, 24/07/2017, Guia para validação de métodos analíticos, 2017.

R. Prasad, Y.S. Shivay, Oxalic acid/oxalates in plants: From self-defence to phytoremediation, Curr. Sci., 112(8), 1665-1667 (2017).

M. Liebman, G. Costa, Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads, J. Urol., 163(5), 1565-1569 (2000).

A.L. Vogel, Química analítica qualitativa, 5th. ed., Mestre Jou, São Paulo, 1981, p. 350-460.

C.W. Wilson, P.E. Shaw, R.J. Knight, Analysis of oxalic acid in carambola (Averrhoa carambola L.) and spinach by high-performance liquid chromatography, J. Agric. Food Chem., 30(6), 1106-1108 (1982).

A. Korus, Z. Lisiewska, J. Stupski, P. Gebczynski, Retention of oxalates in frozen products of three brassica species depending on the methods of freezing and preparation for consumption, Int. J. Refrig., 19(6), 1527-1534 (2011).

E. Koh, S. Charoenprasert, A.E. Mitchell, Effect of Organic and Conventional Cropping Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Varieties of Spinach (Spinacia oleracea L.), J. Agr. Food. Chem., 60(12), 3144-3150 (2012).

D.T.H. Hang, V. Leo, S. Geoffrey, Effect of simple processing methods on oxalate contentof taro petioles and leaves grown in central Vietnam, Food Sci. Technol., 50(1), 259-263 (2013).

D.P. Mishra, N. Mishra, H.B. Musale, P. Samal, S.P. Mishra, D.P. Swain, Determination of seasonal and developmental variation in oxalate content of Anagallis arvensis plant by titration and spectrophotometric method, The Pharma Innovation, 6(6), 105-111 (2017).

R.D. Sá, A.L. Vasconcelos, A.V. Santos, R.J.R. Padilha, L.C. Alves, L.A.L. Soares, K.P. Randau, Anatomy, histochemistry and oxalic acid content of the leaflets of Averrhoa bilimbi and Averrhoa carambola, Rev. Bras. Farmacogn., 29(1), 11-16 (2019).

H. Essack, B. Odhav, J.J. Mellem, Screening of traditional South African leafy vegetables for specific anti-nutritional factors before and after processing, Food Sci. Technol., 37(3), 462-471 (2017).

E.U. Akwaowo, B.A. Ndon, E.U. Etuk, Minerals and antinutrients in fluted pumpkin (Telfairia occidentalis Hook f.), Food Chem. X., 70(2), 235-240 (2000).

B.T. Olawoye, S.O. Gbadamosi, Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed, Cogent. Food Agric., 3(1), 1-14 (2017).

I.D.D. Silva, C.F.S. Aragão, Avaliação de parâmetros de extração da Cinchona Vahl por métodos farmacopéicos e não farmacopéicos, Rev. Bras. Farmacogn., 19(3), 776-780 (2009).

R.W.V. Silva, G.M.G. Martins, R.A. Nascimento, A.F.S. Viana, F.S. Aguiar, B.A. Silva, Use of response surface methodology in optimization of phenolic compounds extraction from the shell of Hymenaea courbaril L. (Jatobá) fruits, Braz. J. Food Technol., 22, 1-13 (2019).

G. Spigno, L. Tramelli, D.M. De Faveri, Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics, J. Food Eng., 81(1), 200-208 (2007).

M. Casagrande, J. Zanela, A. Wagner Jr., C. Busso, J. Wouk, G. Iurckevicz, P.F. Montanher, F. Yamashita, C.R.M. Malfatti, Influence of time, temperature and solvent on the extraction of bioactive compounds of Baccharis dracunculifolia: In vitro antioxidant activity, antimicrobial potential, and phenolic compound quantification, Ind. Crops. Prod., 125, 207-219 (2018).

H. Nguyen, G. Savage, Total, Soluble and insoluble oxalate contents of ripe green and golden kiwifruit, Foods, 2(1), 76-82 (2013). 54. P. Atkins, J. Paula, Físico-química biológica, 1st. ed., Focus, Rio de Janeiro, 2006, p. 30-100.

Y. Liu, C. Zhang, B. Li, H. Li, H. Zhan, Extraction and determination of total and soluble oxalate in pulping and papermaking raw materials, Bioresources, 10(3), 4580-4587 (2015).

Cómo citar

APA

de Caldas Brandão Filho, J. O., Martins Barbosa Filho, J. P. ., Damasceno Sá, R. . y Perrelli Randau, K. . (2022). Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1). https://doi.org/10.15446/rcciquifa.v51n1.102607

ACM

[1]
de Caldas Brandão Filho, J.O., Martins Barbosa Filho, J.P. , Damasceno Sá, R. y Perrelli Randau, K. 2022. Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases. Revista Colombiana de Ciencias Químico-Farmacéuticas. 51, 1 (jul. 2022). DOI:https://doi.org/10.15446/rcciquifa.v51n1.102607.

ACS

(1)
de Caldas Brandão Filho, J. O.; Martins Barbosa Filho, J. P. .; Damasceno Sá, R. .; Perrelli Randau, K. . Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases. Rev. Colomb. Cienc. Quím. Farm. 2022, 51.

ABNT

DE CALDAS BRANDÃO FILHO, J. O.; MARTINS BARBOSA FILHO, J. P. .; DAMASCENO SÁ, R. .; PERRELLI RANDAU, K. . Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 51, n. 1, 2022. DOI: 10.15446/rcciquifa.v51n1.102607. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102607. Acesso em: 28 abr. 2025.

Chicago

de Caldas Brandão Filho, José Odimar, José Pedro Martins Barbosa Filho, Rafaela Damasceno Sá, y Karina Perrelli Randau. 2022. «Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases». Revista Colombiana De Ciencias Químico-Farmacéuticas 51 (1). https://doi.org/10.15446/rcciquifa.v51n1.102607.

Harvard

de Caldas Brandão Filho, J. O., Martins Barbosa Filho, J. P. ., Damasceno Sá, R. . y Perrelli Randau, K. . (2022) «Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases», Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1). doi: 10.15446/rcciquifa.v51n1.102607.

IEEE

[1]
J. O. de Caldas Brandão Filho, J. P. . Martins Barbosa Filho, R. . Damasceno Sá, y K. . Perrelli Randau, «Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases», Rev. Colomb. Cienc. Quím. Farm., vol. 51, n.º 1, jul. 2022.

MLA

de Caldas Brandão Filho, J. O., J. P. . Martins Barbosa Filho, R. . Damasceno Sá, y K. . Perrelli Randau. «Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 51, n.º 1, julio de 2022, doi:10.15446/rcciquifa.v51n1.102607.

Turabian

de Caldas Brandão Filho, José Odimar, José Pedro Martins Barbosa Filho, Rafaela Damasceno Sá, y Karina Perrelli Randau. «Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases». Revista Colombiana de Ciencias Químico-Farmacéuticas 51, no. 1 (julio 7, 2022). Accedido abril 28, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/102607.

Vancouver

1.
de Caldas Brandão Filho JO, Martins Barbosa Filho JP, Damasceno Sá R, Perrelli Randau K. Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 7 de julio de 2022 [citado 28 de abril de 2025];51(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102607

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

475

Descargas

Los datos de descargas todavía no están disponibles.