Publicado

2022-07-07

Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy

Antagonistas del receptor taquiquinina/neuroquinina 3: Análisis in silico ADME/T de nuevos compuestos para la terapia de los sofocos en la menopausia

Antagonistas do receptor de taquicinina/neurocinina 3: análise ADME/T in silico de novos compostos para a terapia de ondas de calor na menopausa

DOI:

https://doi.org/10.15446/rcciquifa.v51n1.102679

Palabras clave:

Hot flashes, menopause, tachykinins, NK3 receptor antagonists, ADMET (en)
Ondas de calor, menopausa, taquicininas, antagonistas do receptor NK3, ADMET (pt)
Sofocos, menopausia, taquiquininas, antagonistas del receptor NK3, ADMET (es)

Autores/as

  • Jorge Andrés Barrero Universidad Nacional de Colombia
  • Angélica María González Clavijo Universidad Nacional de Colombia

Introduction: Neurokinin-B receptor (NK3R) activation is tightly involved in the onset of vasomotor symptoms during menopause, yet there are still no NK3R antagonistic drugs approved for hot flashes therapy. Determining the pharmacokinetic properties of current drug candidates is crucial for scaffold identification and prediction of feasible outcomes in future clinical trials. Aim: To develop a pharmacokinetic profile of new NK3R blockers with hot flashes reducing activity and by comparing them with trial-suspended NK3R antagonists (Osanetant & Talnetant), it is expected to identify enhanced properties in novel compounds. Methodology: For in silico evaluation, Smiles were retrieved from PubChem and DrugBank, and further analysis was carried out through ADMETlab and SwissADME to calculate compounds drug-likeness and pharmacokinetics. Results: Pavinetant & Fezolinetant and SB-222.200 & SB-218.795 exhibited higher compliance with drug-likeness rules and more suitable physicochemical properties when compared to Osanetant & Talnetant. ADME/T evaluation showed considerable disparities between groups, yet no significant difference was reported. Pharmacokinetic properties varied irregularly among studied compounds. Conclusion: Novel NK3R antagonists exhibit enhanced properties when compared to formerly suspended ones. Fezolinetant is predicted to have more favorable outcomes based on in silico evaluation.

Introducción: la activación del receptor de neuroquinina-B (NK3R) está estrechamente relacionada con la aparición de síntomas vasomotores durante la menopausia, no obstante, a la fecha no se reportan fármacos antagonistas de NK3R aprobados para el manejo de sofocos. La evaluación de las propiedades farmacocinéticas de los compuestos inhibidores de NK3R resulta indispensable para la identificación de potenciales farmacóforos y para la estimación de posibles resultados en ensayos clínicos. Objetivo: determinar las características farmacocinéticas de los nuevos compuestos inhibidores de NK3R con propiedades reductoras de los fogajes asociados a la menopausia, y por medio de un análisis comparativo con los antagonistas de NK3R cuyo ensayo clínico fue suspendido (Osanetant & Talnetant), se espera identificar propiedades superiores en los nuevos compuestos desarrollados. Metodología: se obtuvieron los códigos Smiles a partir de PubChem y DrugBank, posteriormente, el análisis se basó en el cálculo de las propiedades farmacocinéticas y drug-like mediante las plataformas ADMETlab y SwissADME. Resultados: Pavinetant & Fezolinetant y SB-222.200 & SB-218.795 exhiben mejores propiedades fisicoquímicas y cumplen a mayor cabalidad las reglas drug-likeness al compararse con Osanetant & Talnetant. La evaluación ADMET reveló variaciones entre los grupos, pero ninguna fue significativa. Las propiedades farmacocinéticas varían de forma irregular entre los distintos compuestos. Conclusiones: los antagonistas de NK3R recientemente desarrollados exhibieron propiedades superiores frente a los compuestos de ensayos suspendidos. Los resultados del estudio in silico permiten deducir que el Fezolinetant podría tener mejores resultados en futuros ensayos clínicos.

Introdução: a ativação do receptor de neuroquinina-B (NK3R) está intimamente relacionada ao aparecimento de sintomas vasomotores durante a menopausa, entretanto, até o momento não há relatos de drogas antagonistas de NK3R aprovadas para o manejo das ondas de calor. A avaliação das propriedades farmacocinéticas de compostos inibidores de NK3R é essencial para a identificação de potenciais farmacoforos e para a estimativa de possíveis resultados em ensaios clínicos. Objetivo: determinar as características farmacocinéticas dos novos compostos inibidores de NK3R com propriedades redutoras de ondas de calor associadas à menopausa, e através de uma análise comparativa com os antagonistas de NK3R cujo ensaio clínico foi suspenso (Osanetant & Talnetant), espera-se identificar propriedades superiores nos compostos recém-desenvolvidos. Metodologia: os códigos Smiles foram obtidos do PubChem e DrugBank, posteriormente, a análise foi baseada no cálculo das propriedades farmacocinéticas e farmacocinéticas utilizando as plataformas ADMETlab e SwissADME. Resultados: Pavinetant & Fezolinetant e SB-222.200 & SB-218.795 apresentam melhores propriedades físico-químicas e atendem mais plenamente às regras de “drug-likeness” quando comparados ao Osanetant & Talnetant. A avaliação ADMET revelou variações entre os grupos, mas nenhuma foi significativa. As propriedades farmacocinéticas variam irregularmente entre os diferentes compostos. Conclusões: os antagonistas de NK3R recém-desenvolvidos exibiram propriedades superiores em relação aos compostos de teste suspensos. Os resultados do estudo in silico permitem nos deduzir que o Fezolinetant poderá ter melhores resultados em futuros ensaios clínicos.

Referencias

D.R. Nässel, M. Zandawala, T. Kawada, H. Satake, Tachykinins: Neuropeptides that are ancient, diverse, widespread and functionally pleiotropic, Front. Neurosci., 13, 1262 (2019).

E. Terasawa, J. P. Garcia, S.B. Seminara, K.L. Keen, Role of kisspeptin and neurokinin B in puberty in female non-human primates, Front. Endocrinol. (Lausanne), 9, 148 (2018).

J. R. Schank, Neurokinin receptors in drug and alcohol addiction, Brain Res., 1734, 146729 (2020).

W. Zhang, Y. Wang, Y.X. Chu, Tacr3/NK3R: Beyond their roles in reproduction, ACS Chem. Neurosci., 11, 2935-2943 (2020).

R. Lechan, Neuroendocrinology, in: S. Melmed, R. Koenig, C. Rosen, R. Auchus, A. Goldfine (editors), Williams Textbook of Endocrinology, Elsevier, 2020, pp. 171-172.

K. Skorupskaite, J.T. George, J.D. Veldhuis, R.P. Millar, R.A. Anderson, Neurokinin 3 receptor antagonism reveals roles for neurokinin B in the regulation of gonadotropin secretion and hot flashes in postmenopausal women, Neuroendocrinology, 106, 148-157 (2018).

M. Zelikowsky, M. Hui, T. Karigo, A. Choe, B. Yang, M.R. Blanco, K. Beadle, V. Gradinaru, B.E. Deverman, D.J. Anderson, The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress, Cell, 173, 1265-1279 (2018).

P. Malherbe, T.M. Ballard, H. Ratni, Tachykinin neurokinin 3 receptor antagonists: a patent review (2005 - 2010), Expert Opin. Ther. Pat., 21, 637-655 (2011).

M. Muñoz, R. Coveñas, Neurokinin receptor antagonism: a patent review (2014-present), Expert Opin. Ther. Pat., 30, 527-539 (2020).

A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7, 42717 (2017).

J. K. Prague, Neurokinin 3 receptor antagonists - prime time?, Climacteric, 24, 25-31 (2021).

A.R. Genazzani, U. Gaspard, J.-M. Foidart, Oral investigational drugs currently in phase I or phase II for the amelioration of menopausal symptoms, Expert Opin. Investig. Drugs, 28, 235-247 (2019).

E.L. Andrade, A.F. Bento, J. Cavalli, S.K. Oliveira, C.S. Freitas, R. Marcon, R.C. Schwanke, J.M. Siqueira, J.B. Calixto, Non-clinical studies required for new drug development. Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies, Braz. J. Med. Biol. Res., 49, e5644 (2016).

C.-Y. Jia, J.-Y. Li, G.-F. Hao, G.-F. Yang, A drug-likeness toolbox facilitates ADMET study in drug discovery, Drug Discov. Today, 25, 248-258 (2020).

G. L. Fraser, S. Lederman, A. Waldbaum, R. Kroll, N. Santoro, M. Lee, L. Skillern, S. Ramael, A phase 2b, randomized, placebo controlled, double-blind, dose-ranging study of the neurokinin 3 receptor antagonist fezolinetant for vaso-motor symptoms associated with menopause, Menopause, 27, 382-392 (2020).

H.M. Sarau, D.E. Griswold, B. Bush, W. Potts, P. Sandhu, D. Lundberg, J.J. Foley, D.B. Schmidt, E.F. Webb, L.D. Martin, J.J. Legos, R.G. Whitmore, F.C. Barone, A.D. Medhurst, M.A. Luttmann, G.A. Giardina, D.W. Hay, Nonpeptide tachykinin receptor antagonists. II. Pharmacological and pharmacokinetic profile of SB-222.200, a central nervous system penetrant, potent and selective NK-3 receptor antagonist, J. Pharmacol. Exp. Ther., 295, 373-81 (2000).

A.D. Medhurst, D.W.P. Hay, A.A. Parsons, L.D. Martin, D.E. Griswold, In vitro and in vivo characterization of NK 3 receptors in the rabbit eye by use of selective non-peptide NK 3 receptor antagonists, Br. J. Pharmacol., 122, 469-476 (1997).

D.E. Clark, S.D. Pickett, Computational methods for the prediction of ‘druglikeness’, Drug Discov. Today, 5, 49-58 (2000).

C.A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol., 1, 337-341 (2004).

D.F. Veber, S.R. Johnson, H.-Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem., 45, 2615-2623 (2002).

A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug Discovery. A qualitative and quantitative characterization of known drug databases, J. Comb. Chem., 1, 55-68 (1999).

J. Dong, N.N. Wang, Z.J. Yao, L. Zhang, Y. Cheng, D. Ouyang, A.P. Lu, D.S. Cao, ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database, J. Cheminform., 10, 29 (2018).

T. Chmiel, A. Mieszkowska, D. Kempińska-Kupczyk, A. Kot-Wasik, J. Namieśnik, Z. Mazerska, The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components, Microchem. J., 146, 393-406 (2019).

W. Wei, S. Cherukupalli, L. Jing, X. Liu, P. Zhan, Fsp3: A new parameter for drug-likeness, Drug Discov. Today, 25, 1839-1845 (2020).

M.R. Naylor, A.M. Ly, M. Handford, D. Ramos, C. Pye, A. Furukawa, V. Klein, R. Nolan, Q. Edmondson, A. Turmon, W. Hewitt, J. Schwochert, C. Townsend, C. Kelly, M. Blanco, R. Lokey, Lipophilic permeability efficiency reconciles the opposing roles of lipophilicity in membrane permeability and aqueous solubility, J. Med. Chem., 61, 11169-11182 (2018).

M.D. Shultz, Two decades under the influence of the rule of five and the changing properties of approved oral drugs, J. Med. Chem., 62, 1701-1714 (2019).

G. Caron, V. Digiesi, S. Solaro, G. Ermondi, Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space, Drug Discov. Today, 25, 621-627 (2020).

L. Guan, H. Yang, Y. Cai, L. Sun, P. Di, W. Li, G. Liu, Y. Tang, ADMET-score. A comprehensive scoring function for evaluation of chemical drug-likeness, Medchemcomm, 10, 148-157 (2019).

D. Camp, A. Garavelas, M. Campitelli, Analysis of physicochemical properties for drugs of natural origin, J. Nat. Prod., 78, 1370-1382 (2015).

N.A. Meanwell, Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety, Chem. Res. Toxicol., 24, 1420-1456 (2011).

W. Bououden, Y. Benguerba, Computational quantum chemical study, druglikeness and in silico cytotoxicity evaluation of some steroidal anti-inflammatory drugs, J. Drug Deliv. Ther., 10, 68 74 (2020).

S. Pathania, P.K. Singh, Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols?, Expert Opin. Drug Metab. Toxicol., 1, 1-4 (2020).

S. Mignani, J. Rodrigues, H. Tomas, R. Jalal, P.P. Singh, J.P Majoral, R. Vishwakarma, Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?, Drug Discov. Today, 23, 605-615 (2018).

K.M. Gayvert, N.S. Madhukar, O. Elemento, A data-driven approach to predicting successes and failures of clinical trials, Cell Chem. Biol., 23, 1294-1301 (2016).

N.-N. Wang, C. Huang, J. Dong, Z.-J. Yao, M. Zhu, Z. Deng, B. Lv, A. Lu, A. Chen, D. Cao, Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues, RSC Adv., 7, 19007-19018 (2017).

P.W. Smith, P.A. Wyman, P. Lovell, C. Goodacre, H.T. Serafinowska, A. Vong, F. Harrington, S. Flynn, D.M. Bradley, R. Porter, S. Coggon, G. Murkitt, K. Searle, D.R. Thomas, J.M. Watson, W. Martin, Z. Wu, L.A. Dawson, New quinoline NK3 receptor antagonists with CNS activity, Bioorg. Med. Chem. Lett., 19, 837-840 (2009).

N. Santoro, A. Waldbaum, S. Lederman, R. Kroll, G. Fraser, C. Lademacher, L. Skillern, J. Young, S. Ramael, Effect of the neurokinin 3 receptor antagonist fezolinetant on patient-reported outcomes in postmenopausal women with vaso-motor symptoms: results of a randomized, placebo-controlled, double-blind, dose-ranging study (Vesta), Menopause, 27, 1350-1356 (2020).

W.M. Pardridge, CNS drug design based on principles of blood-brain barrier transport, J. Neurochem., 70, 1781-1792 (2002).

R. Gabathuler, Approaches to transport therapeutic drugs across the blood brain barrier to treat brain diseases, Neurobiol. Dis., 37, 48-57 (2010).

N.-N. Wang, C. Huang, J. Dong, Z.-J. Yao, M. Zhu, Z. Deng, B. Lv, A. Lu, A. Chen, D. Cao, ADME properties evaluation in drug discovery: Prediction of Caco-2 cell permeability using a combination of NSGA-II and boosting, J. Chem. Inf. Model., 56, 763-773 (2016).

R. Didziapetris, P. Japertas, A. Avdeef, A. Petrauskas, Classification analysis of P-glycoprotein substrate specificity, J. Drug Target., 11, 391-406 (2003).

R. B. van Breemen, Y. Li, Caco-2 cell permeability assays to measure drug absorption, Expert Opin. Drug Metab. Toxicol., 1, 175-185 (2005).

A. Alam, J. Kowal, E. Broude, I. Roninson, K. P. Locher, Structural insight into substrate and inhibitor discrimination by human P-glycoprotein, Science, 363, 753-756 (2019).

S. Tian, Y. Li, J. Wang, J. Zhang, T. Hou, ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints, Mol. Pharm., 8, 841-851 (2011).

G. Berellini, C. Springer, N.J. Waters, F. Lombardo, In silico prediction of volume of distribution in human using linear and nonlinear models on a 669 compound data set, J. Med. Chem., 52, 4488 4495 (2009).

D.A. Smith, K. Beaumont, T.S. Maurer, L. Di, Relevance of half-life in drug design, J. Med. Chem., 61, 4273-4282 (2018).

M. Rostkowski, O. Spjuth, P. Rydberg, WhichCyp: prediction of cytochromes P450 inhibition, Bioinformatics, 29, 2051-2052 (2013).

A. Isvoran, M. Louet, D. Vladoiu, D. Craciun, M. Loriot, B. Villoutreix, M. Miteva, Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug

metabolism, Drug Discov. Today, 22, 366-376 (2017).

S. Feng, X. He, Mechanism-based inhibition of CYP450: An indicator of drug induced hepatotoxicity, Curr. Drug Metab., 14, 921-945 (2013).

S. Wang, H. Sun, H. Liu, D. Li, Y. Li, T. Hou, ADMET evaluation in drug discovery. 16. Predicting hERG blockers by combining multiple pharmacophores and machine learning approaches, Mol. Pharm., 13, 2855-2866 (2016).

D. Mulliner, F. Schmidt, M. Stolte, H.-P. Spirkl, A. Czich, A. Amberg, Computational models for human and animal hepatotoxicity with a global application scope, Chem. Res. Toxicol., 29, 757-767 (2016).

Y. Xu, Z. Dai, F. Chen, S. Gao, J. Pei, L. Lai, Deep learning for drug-induced liver injury, J. Chem. Inf. Model., 55, 2085-2093 (2015).

Cómo citar

APA

Barrero, J. A. y González Clavijo, A. M. (2022). Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1). https://doi.org/10.15446/rcciquifa.v51n1.102679

ACM

[1]
Barrero, J.A. y González Clavijo, A.M. 2022. Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy. Revista Colombiana de Ciencias Químico-Farmacéuticas. 51, 1 (jul. 2022). DOI:https://doi.org/10.15446/rcciquifa.v51n1.102679.

ACS

(1)
Barrero, J. A.; González Clavijo, A. M. Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy. Rev. Colomb. Cienc. Quím. Farm. 2022, 51.

ABNT

BARRERO, J. A.; GONZÁLEZ CLAVIJO, A. M. Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 51, n. 1, 2022. DOI: 10.15446/rcciquifa.v51n1.102679. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102679. Acesso em: 22 jun. 2024.

Chicago

Barrero, Jorge Andrés, y Angélica María González Clavijo. 2022. «Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy». Revista Colombiana De Ciencias Químico-Farmacéuticas 51 (1). https://doi.org/10.15446/rcciquifa.v51n1.102679.

Harvard

Barrero, J. A. y González Clavijo, A. M. (2022) «Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy», Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1). doi: 10.15446/rcciquifa.v51n1.102679.

IEEE

[1]
J. A. Barrero y A. M. González Clavijo, «Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy», Rev. Colomb. Cienc. Quím. Farm., vol. 51, n.º 1, jul. 2022.

MLA

Barrero, J. A., y A. M. González Clavijo. «Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 51, n.º 1, julio de 2022, doi:10.15446/rcciquifa.v51n1.102679.

Turabian

Barrero, Jorge Andrés, y Angélica María González Clavijo. «Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy». Revista Colombiana de Ciencias Químico-Farmacéuticas 51, no. 1 (julio 7, 2022). Accedido junio 22, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/102679.

Vancouver

1.
Barrero JA, González Clavijo AM. Tachykinin/neurokinin 3 receptor antagonists: In silico ADME/T analysis of novel compounds for menopause hot flashes therapy. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 7 de julio de 2022 [citado 22 de junio de 2024];51(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102679

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

790

Descargas

Los datos de descargas todavía no están disponibles.