Publicado
Tempol decreases the levels of reactive oxygen species in human neutrophils and impairs their response to Mycobacterium tuberculosis
Tempol disminuye los niveles de especies reactivas de oxígeno en neutrófilos humanos y debilita la respuesta hacia Mycobacterium tuberculosis
Tempol diminui os níveis de espécies reativas de oxigênio em neutrófilos humanos e enfraquece a resposta ao Mycobacterium tuberculosis
DOI:
https://doi.org/10.15446/rcciquifa.v51n1.102682Palabras clave:
Reactive oxygen species, antioxidant, nitroxide, Tempol, Mycobacterium tuberculosis, tuberculosis (en)Espécies reativas de oxigênio, antioxidante, nitróxido, Tempol, Mycobacterium tuberculosis, tuberculose (pt)
Especies reactivas de oxígeno, antioxidante, nitróxido, Tempol, Mycobacterium tuberculosis, tuberculosis (es)
Descargas
Background and aims: Mycobacterium tuberculosis (Mtb), the main causative agent of human tuberculosis (TB), remains as a serious public health problem. The innate immune responsefollowing Mtb infection plays a crucial role in preventing the onset of active TB and limiting its spread. Since phagocytes-derived reactive oxygen/nitrogen species (ROS/RNS) during the oxidative burst can fight Mtb, we hypothesized that the use of antioxidants could increase the host’s susceptibility to Mtb/TB. In that way, we investigated the effects of the nitroxide Tempol, an antioxidant with superoxide dismutase-like activity, on the response of neutrophils against Mtb. Methods: Human blood derived neutrophils were isolated from healthy volunteers and incubated with Mtb (H37Ra) at different multiplicities of infection (MOIs), in the absence or presence of Tempol. The levels of ROS in neutrophils were evaluated using the cytochrome C reduction assay (extracellular O2•-) and luminol-(total intracellular and extracellular ROS) and isoluminol-(extracellular ROS) amplified chemiluminescence assay. The killing assay (two-step protocol) checked the mycobactericidal capacity of neutro-phils, as calculated the phagocytosis (Kp) and intracellular killing (Kk) rates. Results: The levels of ROS and killing capacity in Mtb-stimulated neutrophils were significantly decreased by 450 µM Tempol (p < 0.05). Interestingly, Tempol decreased the kk of neutrophils, but did not affect their kp, demonstrating that a putative diminution in ROS levels, ultimately, affected the intracellular killing of Mtb. Conclusion: This study provides insights regarding the role of antioxidants on the neutrophil response toward Mtb, so that our findings deserve to be considered regarding further studies and clinical implications.
Contextualización y objetivos: Mycobacterium tuberculosis (Mtb), el principal agente causal de la tuberculosis humana (TB), es un grave problema de salud pública. La respuesta inmune innata desencadenada en la infección por Mtb juega un papel crucial en la prevención de la aparición de la tuberculosis activa y en la limitación de su propagación. Dado que las especies reactivas de oxígeno/nitrógeno derivadas de los fagocitos (ERO/ERN) durante el burst oxidativo pueden combatir la infección pulmonar por Mtb, planteamos la hipótesis de que el uso de antioxidantes podría aumentar la susceptibilidad del huésped humano hacia Mtb/TB. De esa manera, investigamos los efectos del nitróxido Tempol, un antioxidante con actividad similar a la superóxido dismutasa, sobre la respuesta de los neutrófilos contra Mtb. Métodos: se aislaron neutrófilos derivados de sangre humana de voluntarios sanos y se incubaron con Mtb (H37Ra) en diferentes multiplicidades de infección(MOI), en ausencia o presencia de Tempol. Los niveles de ERO en neutrófilos se evaluaron mediante el ensayo de la reducción del citocromo C (O2•extracelular) y el ensayo de quimioluminiscencia, amplificada mediante el uso de luminol (ERO total, intracelular y extracelular) e isoluminol (ERO extracelular). La prueba de actividad microbicida (protocolo de dos pasos) verificó la capacidad micobactericida de los neutrófilos, calculando las tasas de fagocitosis (Kp) y muerte intracelular (Kk). Resultados: los niveles de ERO y la capacidad micobactericida en neutrófilos estimulados con Mtb disminuyeron significativamente en los grupos tratados con 450 µM de Tempol (p < 0,05). Curiosamente, Tempol disminuyó la tasa de muerte intracelular (Kk) en neutrófilos, pero no tuvo ningún efecto sobre la tasa de fagocitosis (Kp), lo que demuestra que una supuesta disminución en los niveles de ERO, en última instancia, afectó la destrucción intracelular de Mtb. Conclusión: este estudio proporciona información sobre el papel de los antioxidantes en la respuesta de los neutrófilos hacia Mtb, por lo que nuestros hallazgos merecen ser considerados con respecto a más estudios e implicaciones clínicas.
Contextualização e objetivos: Mycobacterium tuberculosis (Mtb), principal agente causal da tuberculose humana (TB), é um grave problema de saúde pública. A resposta imune inata desencadeada pela infecção por Mtb desempenha um papel crucial na prevenção do aparecimento da tuberculose ativa e na limitação de sua disseminação. Como as espécies reativas de oxigênio/nitrogênio derivadas de fagócitos (ERO/ERN) durante a burst oxidativa podem combater a infecção pulmonar por Mtb, hipotetizamos que o uso de antioxidantes poderia aumentar a suscetibilidade do hospedeiro humano ao Mtb/TB. Assim, investigamos os efeitos do nitróxido de Tempol, um antioxidante com atividade semelhante a superóxido dismutase, na resposta de neutrófilos contra o Mtb. Métodos: neutrófilos derivados de sangue humano foram isolados de voluntários saudáveis e incubados com Mtb(H37Ra) em diferentes multiplicidades de infecção (MOI), na ausência ou presença de Tempol. Os níveis de ERO em neutrófilos foram avaliados por ensaio de depleção de citocromo C (O2•- extracelular) e ensaio de quimioluminescência, amplificado com luminol (ERO total, intracelular e extracelular) e isoluminol (ERO
extracelular). O teste de atividade microbicida (protocolo de duas etapas) verificou a capacidade micobactericida dos neutrófilos, calculando as taxas de fagocitose (Kp) e morte intracelular (Kk). Resultados: os níveis de ERO e a capacidade micobactericida em neutrófilos estimulados por Mtb diminuíram significativamente nos grupos tratados com Tempol 450 µM (p < 0,05). Curiosamente, Tempol diminuiu a taxa de morte intracelular (Kk) em neutrófilos, mas não teve efeito sobre a taxa de fagocitose (Kp), mostrando que uma diminuição putativa nos níveis de ERO afetou a morte intracelular de Mtb. Conclusão: este estudo fornece informações sobre o papel dos antioxidantes na resposta dos neutrófilos ao Mtb, portanto, nossos achados merecem consideração para estudos adicionais e implicações clínicas.
Referencias
World Health Organization (WHO), Global Tuberculosis Report 2019, WHO Press, Geneva, Switzerland, 2019.
F.R. Martins-Melo, J.M.T. Bezerra, D.S. Barbosa, et al., The burden of tuberculosis and attributable risk factors in Brazil, 1990–2017: results from the Global Burden of Disease Study 2017, Popul. Health Metr., 18(Suppl 1), 10 (2020).
A. Kahnert, P. Seiler, M. Stein, et al., Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur. J. Immunol., 36, 631-647 (2006).
Y.N. Reddy, S.V. Murthy, D.R. Krishna, et al., Role of free radicals and antioxidants in tuberculosis patients, Indian J. Tuberc., 51, 213-218 (2004).
A. Yuniastuti, The role and characteristic of antioxidant for redox homeostasis control system in Mycobacterium tuberculosis, Int. Res. J. Microbiol., 3, 416-422 (2012).
I. Wiid, T. Seaman, E.G. Hoal,et al., Total antioxidant levels are low during active TB and rise with anti-tuberculosis therapy, IUBMB Life, 56, 101-106 (2004).
D.O. Butov, M.M. kuzhko, I.M. kuznetsova, et al., Dynamics of oxidant-antioxidant system in patients with multidrug-resistant tuberculosis receiving antimycobacterial therapy, J. Pulm. Respir. Med., 3, 5 (2013).
N. Perskvist, L. Zheng, O. Stendahl, Activation of human neutrophils by Mycobacterium tuberculosis H37Ra involves phospholipase Cg2, Shc adapter protein, and p38 mitogen-activated protein kinase, J. Immunol., 164, 959-965 (2000).
C. Neufert, R.K. Pai, E.H. Noss, et al., Mycobacterium tuberculosis19-kDa lipoprotein promotes neutrophil activation, J. Immunol., 167, 1542-1549 (2001).
H. Takei, A. Araki, H. Watanabe, et al., Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis, J. Leukoc. Biol., 59, 229-240 (1996).
Y.L. Lau, G.C.F. Chan, S.Y. Ha, et al., The role of phagocytic respiratory burst in host defense against Mycobacterium tuberculosis, Clin. Infect. Dis., 26, 226-227 (1998).
A.E. Brown, T.J. Holzer, B.R. Andersen, Capacity of human neutrophils to kill Mycobacterium tuberculosis, J. Infect. Dis., 156, 985-989 (1987).
C-C. Chiang, M. Korinek, W-J. Cheng, et al., Targeting Neutrophils to Treat Acute Respiratory Distress Syndrome in Coronavirus Disease, Front. Pharmacol., 11, 572009 (2020).
R. Su, Y-P. Peng, Z. Deng, et al., Mycobacterium tuberculosis infection induces low-density granulocyte generation by promoting neutrophil extracellular trap formation via ROS pathway, Front. Microbiol., 10, 1468 (2019).
V. Brinkmann, U. Reichard, C. Goosmann, et al., Neutrophil extracellular traps kill bacteria, Science, 303, 1532-1535 (2004).
C. Bogdan, M. Röllinghoff, A. Diefenbach. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity, Curr. Opin. Immunol., 12, 64-76 (2000).
P.S. Jackett, V.R. Aber, D.B. Lowrie, Virulence of Mycobacterium tuberculosis and susceptibility to peroxidative killing systems, J. Gen. Microbiol., 107(2), 273-278 (1978).
M.E. May, P.J. Spagnuolo, Evidence for activation of a respiratory burst in the interaction of human neutrophils with Mycobacterium tuberculosis, Infect. Immun., 55, 2304-2307 (1987).
L.B. Adams, M.C. Dinauer, D.E. Morgenstern, et al., Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice, Tubercle. Lung Dis., 78, 237-246 (1997).
S. kalsum, C. Braian, V.A.C. Koeken, et al., The cording phenotype of Mycobacterium tuberculosis induces the formation of extracellular traps in human macrophages, Front. Cell. Infect. Microbiol., 7, 278 (2017).
M. Röhm, M.J. Grimm, A.C. D’Auria, et al., NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis, Infect. Immun., 82, 1766-1777 (2014).
W. Stoiber, A. Obermayer, P. Steinbacher, et al., The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans, Biomolecules, 5, 702-723 (2015).
V. Ramos-Kichik, R. Mondragón-Flores, M. Mondragón-Castelán, et al., Neutrophil extracellular traps are induced by Mycobacterium tuberculosis, Tuberculosis, 89(1), 29-37 (2009).
J.A. Smith, Neutrophils, host defence, and inflammation: a double-edged sword, J. Leukoc. Biol., 56, 672-686 (1994).
V. Delgado-Rizo, M.A. Martínez-Guzmán, L. Iñiguez-Gutierrez, et al., Neutrophil extracellular Traps and its implications in inflammation: An Overview, Front. Immunol., 8, 81 (2017).
O.Z. Cheng, N. Palaniyar, NET balancing: a problem in inflammatory lung diseases, Front. Immunol., 24, 4 (2013).
G.A. Funchal, N. Jaeger, R.S. Czepielewski, et al., Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils, PLoS One, 10, e0124082 (2015).
M. Leppkes, J. Knopf, E. Naschberger, et al., Vascular occlusion by neutrophil extracellular traps in COVID-19, EBioMedicine, 58, 102925 (2020).
F. Grabcanovic-Musija, A. Obermayer, W. Stoiber, et al., Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation, Respir. Res., 16, 59 (2015).
V. Marcos, Z. Zhou-Suckow, A.O. Yildirim, et al., Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction, Mediators Inflamm., 2015, 408935 (2015).
K. Schroecksnadel, B. Fisher, H. Schennach, et al., Antioxidants suppres Th1-Type Immune response in vitro, Drug Metab. Lett., 1, 166-171 (2007).
D. Brambilla, C. Mancuso, M.R. Scuderi, et al., The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile, Nutr. J., 7, 9 (2008).
Y. Aronovitch, D. Godinger, A. Israeli, et al., Dual activity of nitroxides as pro and antioxidants: Catalysis of copper-mediated DNA breakage and H2O2 dismutation, Free Rad. Biol. Med., 42, 1317-1325 (2007).
M. Yamato, K. Kawano, Y. Yamanaka, et al., Tempol increases NAD+ and improves redox imbalance in obese mice, Redox Biol., 8, 316-322 (2016).
T.C. Jackson, Z. Mi, E.K. Jackson, Modulation of cyclic AMP production by signal transduction pathways in preglomerular microvessels and microvascular smooth muscle cells, J. Pharmacol. Exp. Ther., 310, 349-358 (2004).
A. Hosseinzadeh, P.K. Messer, C.F. Urban, Stable redox-cycling nitroxide Tempol inhibits NET formation, Front. Immunol., 3, 391 (2012).
S.N.P. Lima, C.D. Cerdeira, G.B. Santos, et al., Tempol modulates the leukocyte response to inflammatory stimuli and attenuates endotoxin-induced sickness behaviour in mice, Arch. Physiol. Biochem., 126(4), 341-347 (2018).
G.B. Santos, L. Gonzalez-Perilli, M. Mastrogiovanni, A. Aicardo, C.D. Cerdeira, A. Trostchansky, M.R.P. Brigagão, Nitroxide 4-Hydroxy-2,2’,6,6’-tetramethyl piperidine 1-oxyl (Tempol) inhibits the reductase activity of protein disulfide isomerase via covalent binding to the Cys400 residue on CXXC redox motif at the active site, Chem. Biol. Interact., 272, 117-124 (2017).
G.B. Santos, A.C.G. Ribeiro, S.N.P. Lima, A. Trostchansky, C.D. Cerdeira, M.R.P.L. Brigagão, Nitroxide Tempol down-regulates kinase activities associated with NADPH oxidase function in phagocytic cells and potentially decreases their fungicidal response, Chem. Biol. Interact., 279, 203-209 (2018).
W.M. Nauseef, Isolation of human neutrophils from venous blood, Methods Mol. Biol., 412, 15 34 (2007).
C. Dahlgren, A. Karlsson, J. Bylund, Measurement of respiratory burst products generated by Professional phagocytes, Methods Mol. Biol., 412, 349-364 (2007).
J.N. Green, C.C. Winterbourn, M.B. Hampton, Analysis of neutrophil bactericidal activity, Methods Mol. Biol., 412, 319-332 (2007).
C.D. Cerdeira, M.R.P.L. Brigagão, M.L. de Carli, et al., Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity, J. Biophotonics, 9, 1180-1188 (2016).
C. Cywes, N. Godenir, H.C. Hoppe, et al., Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells, Infect. Immun., 64, 5373-5383 (1996).
L.S. Schlesinger, Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosisis mediated by mannose receptors in addition to complement receptors, J. Immunol., 150, 2920-2930 (1993).
M.A. Velasco-Velázquez, D. Barrera, A. González-Arenas, et al., Macrophage-Mycobacterium tuberculosis interactions: role of complement receptor 3, Microb. Pathog., 35, 125-131 (2003).
T. Repasy, J. Lee, S. Marino, et al., Intracellular Bacillary Burden Reflects a Burst Size for Mycobacterium tuberculosis In Vivo, PLoS Pathog., 9, e1003190 (2013).
J. Bustamante, G. Aksu, G. Vogt, et al., BCG-osis and tuberculosis in a child with chronic granulomatous disease, J. Allergy Clin. Immunol., 120, 32-38 (2007).
A.K. Gupta, M.B. Joshi, M. Philippova, et al., Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death, FEBS Letters, 584, 3193-3197 (2010).
Y. Li, A. Karlin, J.D. Loike, et al., A critical concentration of neutrophils is required for effective bacterial killing in suspension, Proc. Natl. Acad. Sci. USA, 99, 8289-8294 (2002).
Y-J. Lim, M-H. Yi, J-A. Choi, et al., Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections, Sci. Rep., 6, 37211 (2016).
J.D. Macmicking, R.J. North, R. Lacourse, et al., Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acad. Sci. USA, 94, 5243-5248 (1997).
M.D. Shastri, S.D. Shukla, W.C. Chong, et al., Role of oxidative stress in the pathology and management of human tuberculosis, Oxid. Med. Cell. Longev., 2018, 7695364 (2018).
G.S. Jones, H.J. Amirault, B.R. Andersen, Killing of Mycobacterium tuberculosisby neutrophils: a nonoxidative process, J. Infect. Dis., 162, 700704 (1990).
N. Perskvist, M. Long, O. Stendahl, et al., Mycobacterium tuberculosis Promotes Apoptosis in Human Neutrophils by Activating Caspase-3 and Altering Expression of Bax/Bcl-xL Via an Oxygen Dependent Pathway, J. Immunol., 168, 6358-6365 (2002).
M. Majeed, N. Perskvist, J.D. Ernst, et al., Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils, Microb. Pathog., 24, 309-320 (1998).
C.H.J. Kim, J.B. Mitchell, C.A. Bursill, et al., The nitroxide radical Tempol prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE (-/-) mice, Atherosclerosis, 240, 234-241 (2015).
S. Neil, J. Huh, V. Baronas, et al., Oral administration of the nitroxide radical Tempol exhibits immunomodulatory and therapeutic properties in multiple sclerosis models, Brain, Behav. Immun., 62, 332-343 (2017).
G. Lugo-Villarino, C. Vérollet, I. Maridonneau-Parini, et al., Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV, Front. Immunol., 2, 10 (2011).
A.A. El Hafez, Could neutrophil extracellular traps elucidate the mysteries of pathogenesis?, J. Clin. Exp. Pathol., 4, 174 (2014).
C. Radermecker, N. Detrembleur, J. Guiot, et al., Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19, J. Exp. Med., 217, e20201012 (2020).
K-W. Wong, W.R. Jacobs, Jr., Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis, J. Infect. Dis., 208, 109-119 (2013).
C. Vilchèze, T. Hartman, B. Weinrick, et al., Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, 114, 4495-4500 (2017).
A. Kumar, A. Farhana, L. Guidry, et al., Redox homeostasis in mycobacteria: the key to tuberculosis control?, Expert. Rev. Mol. Med., 13, e39 (2011).
T. Yano, S. Kassovska-Bratinova, J.S. Teh, et al., Reduction of clofazimine by mycobacterial type 2 NADH: quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species, J. Biol. Chem., 286, 10276-10287 (2011).
C.S. Wilcox, Effects of Tempol and redox-cycling nitroxides in models of oxidative stress, Pharmacol. Ther., 126, 119-145 (2010).
J.M. Metz, D. Smith, R. Mick, et al., A Phase I Study of Topical Tempol for the Prevention of Alopecia Induced by Whole Brain Radiotherapy, Clin. Cancer Res., 10, 6411-6417 (2004).
M. Laforge, C. Elbim, C. Frère, et al., Tissue damage from neutrophil-induced oxidative stress in COVID-19, Nat. Rev. Immunol., 4, 2 (2020).
R.M. Golonka, P. Saha, B.S. Yeoh, et al., Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease, Physiol. Genomics, 52, 217-221 (2020).
L. Delgado-Roche, F. Mesta, Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection, Arch. Med. Res., 51, 384e387 (2020).
R. Cecchini, A.L. Cecchini, SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression, Med. Hypotheses, 143, 110102 (2020).
R.B. Moss, D.J. Carlo, Targeting COVID-19 inflammation and oxidative stress, Emerg. Infect. Dis. Diag. J., EIDDJ-100025 (2020).
P.H. Proctor, Tempol treatment of COVID-19, Free Rad. Biol. Med., 159, S95 (2020).
M-P. Ntyonga-Pono, COVID-19 infection and oxidative stress: an underexplored approach for prevention and treatment?, Pan Afr. Med. J., 35, 12 (2020).
A. Mantovani, M.A. Cassatella, C. Costantini, et al., Neutrophils in the activation and regulation of innate and adaptive immunity, Nat. Rev. Immunol., 11, 519-531 (2011).
M.G.M. de Melo, E.D.D. Mesquita, M.M. Oliveira, et al, Imbalance of NET and alpha-1 antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage, Front. Immunol, 9, 3147 (2019).
M.F. Denny, S. Yalavarthi, W. Zhao, et al., A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs, J. Immunol., 184, 3284-3297 (2010).
S.Y. Eum, J.H. Kong, M.S. Hong, et al., Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB, Chest, 137, 122-128 (2010).
F.A. Gallant, D. R. Azoulay, Hair-sparing whole brain IMRT and topical Tempol in patients with brain metastases: A prospective phase II trial for the prevention of iatrogenic alopecia, Int. J. Rad. Oncol. Biol. Phys., 81, S677 (2011).
P. Brodin, M.M. Davis, Human immune system variation, Nat. Rev. Immunol., 17, 21-29 (2017).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13