Publicado
Metabolomics studies of allelopathy: a review
Estudios metabolómicos de la alelopatía: una revisión
Estudos metabolômicos de alelopatia: uma revisão
DOI:
https://doi.org/10.15446/rcciquifa.v51n1.102693Palabras clave:
Allelochemicals, allelopathy, allelopathome, benzoxazinones, momilactones (en)Aleloquímicos, alelopatía, alelopatoma, benzoxazinonas, momilactonas (es)
Aleloquímicos, alelopatia, alelopatoma, benzoxazinonas, momilactonas (pt)
Descargas
Introduction: Allelopathy is a harmful effect indirectly or directly produced by one plant to another through the production of chemical substances that enter the environment. Allelopathy has a pertinent significance for systems of ecological, sustainable, and integrated management. These natural reactions have multiple effects, ranging from processes of inhibition and stimulation of growth in neighbor plants to inhibition of seed germination. Metabolomics is a discipline integral that studies all the metabolites in a particular tissue, organ, or organism in a specific developmental stage or under particular environmental conditions, and it allows for the assessment of the contribution of genetic and environmental factors to the modification of metabolism. With the growing number of “omics”, new approaches can be used to understand metabolic changes that occur in plants, especially in proteomics and metabolomics, and thus those analyses could be profiled in coming years with the objective of knowing the allelopathome of a larger number of plant species and their interactions. Aim: To provide a recent update on the science of allelopathy in the context of physiology, practical application of metabolomics in allelopathic studies, allelochemicals analyzed by metabolomics in alfalfa, rice, canola, sorghum, rye, wheat and other crops and finally mentionated the biological activity of allelopathic secondary metabolites. Methods: A recent comprehensive literature search of allelopathy and metabolomics in journal databases was carried out. Results: The concept of allelopathy, allelopathic mechanisms, metabolomic studies in allelopathy, allelochemicals analysed by metabolomics in alfalfa, rice, canola, rye sorghum, wheat and other agro-industrially important crops, and the biological activity of allelopathic secondary metabolites are detailed. Conclusions: These studies suggest that a combination of secondary metabolites can be used to attack weeds. In situ and In vitro culture of secondary metabolites (allelochemical types) is recommended to be used as organics compounds in weed organic control in the future.
Introducción: la alelopatía es un efecto nocivo producido directa o indirectamente por una planta a otra a través de la producción de sustancias químicas que ingresan al medio ambiente. La alelopatía es importante para los sistemas de manejo ecológico, sostenible e integrado. Estas reacciones naturales tienen múltiples efectos, que van desde procesos de inhibición y estimulación del crecimiento en plantas vecinas hasta la inhibición de la germinación de semillas. La metabolómica es una disciplina integral que estudia todos los metabolitos en un determinado tejido, órgano u organismo en una determinada etapa de desarrollo o en determinadas condiciones ambientales, y permite evaluar la contribución de los factores genéticos y ambientales a la modificación del metabolismo. Con el creciente número de “ómicas”, se pueden utilizar nuevos enfoques para comprender los cambios metabólicos que ocurren en las plantas, especialmente en proteómica y metabolómica, y así esos análisis podrían perfilarse en los próximos años con el objetivo de conocer el alelopatoma de un mayor número. de las especies de plantas y sus interacciones. Objetivo: proporcionar una actualización reciente sobre la ciencia de la alelopatía en el contexto de la fisiología, la aplicación práctica de la metabolómica en los estudios alelopáticos, los aleloquímicos analizados por metabolómica en alfalfa, arroz, canola, sorgo, centeno, trigo y otros cultivos y, finalmente, mencionar los aspectos biológicos. actividad de los metabolitos secundarios alelopáticos. Métodos: se realizó una búsqueda bibliográfica exhaustiva reciente sobre alelopatía y metabolómica en bases de datos de revistas.Resultados: se detalla el concepto de alelopatía, los mecanismos alelopáticos, los estudios metabolómicos en alelopatía, los aleloquímicos analizados por metabolómica en alfalfa, arroz, canola, sorgo de centeno, trigo y otros cultivos de importancia agroindustrial, y la actividad biológica de los metabolitos secundarios alelopáticos. Conclusiones: estos estudios sugieren que se puede utilizar una combinación de metabolitos secundarios para atacar a las malas hierbas. Se recomienda el cultivo in situ e in vitro de metabolitos secundarios (de tipo aleloquímico) para ser utilizados como compuestos orgánicos en el control orgánico de las malas hierbas en el futuro.
Introdução: a alelopatia é um efeito nocivo produzido de forma indireta ou direta por uma planta a outra por meio da produção de substâncias químicas que adentram o meio ambiente. A alelopatia é importante para sistemas de manejo ecológico, sustentável e integrado. Essas reações naturais têm múltiplos efeitos, que vão desde processos de inibição e estimulação do crescimento em plantas vizinhas até a inibição da germinação de sementes. A metabolômica é uma disciplina integral que estuda todos os metabólitos em um determinado tecido, órgão ou organismo em um estágio de desenvolvimento específico ou condições ambientais particulares, e permite avaliar a contribuição de fatores genéticos e ambientais para a modificação do metabolismo. Com o crescente número de “ômicas”, novas abordagens podem ser utilizadas para entender as alterações metabólicas que ocorrem nas plantas, principalmente em proteômica e metabolômica, e assim essas análises poderão ser perfiladas nos próximos anos com o objetivo de conhecer o alelopatoma de um número maior das espécies vegetais e suas interações. Objetivo: fornecer uma atualização recente sobre a ciência da alelopatia no contexto da fisiologia, aplicação prática da metabolômica em estudos alelopáticos, aleloquímicos analisados por metabolômica em alfafa, arroz, canola, sorgo, centeio, trigo e outras culturas e, finalmente, mencionar atividade de metabólitos secundários alelopáticos. Métodos: uma pesquisa bibliográfica abrangente recente sobre alelopatia e metabolismo foi conduzida em bancos de dados de periódicos. Resultados: o conceito de alelopatia, mecanismos alelopáticos, estudos metabólicos em alelopatia, aleloquímicos analisados por metabolômicos em alfafa, arroz, canola, sorgo de centeio, trigo e outros cultivos agroindustriais importantes, e a atividade biológica dos metabólitos secundários alelopáticos são detalhados. Conclusões: esses estudos sugerem que uma combinação de metabólitos secundários pode ser usada para atacar ervas daninhas. Recomenda-se o cultivo in situ e in vitro de metabólitos secundários (tipo alquímico) para uso como compostos orgânicos no controle de ervas daninhas orgânicas no futuro.
Referencias
D. Inderjit, D.A. Wardle, R. Karban, R.M. Callaway, The ecosystem and evolutionary contexts of allelopathy, Trends in Ecology & Evolution, 26, 655-662 (2011). Doi: https://doi.org/10.1016/j.tree.2011.08.003
L. Tan, B. Goh, Chemical ecology of marine cyanobacterial secondary metabolites: A mini-review, Journal of Coastal Development, 13, 1-8, (2011). Doi: https://doi.org/10.1039/c2np00075j
F. Hadacek, Secondary metabolites as plant traits: current assessment and future perspectives, Critical Reviews in Plant Sciences, 21, 273-322 (2002). Doi: https://doi.org/10.1080/0735-260291044269
D. Inderjit, Ecophysiological aspects of allelopathy, Planta, 217, 529-539 (2003). Doi: https://doi.org/10.1007/s00425-003-1054-z
S.J.C. Inderjit, M. Olofsdotter, Joint action of phenolic acid mixtures and its significance in allelopathy research, Physiologia Plantarum, 114, 422-428 (2002). Doi: https://doi.org/10.1034/j.1399-3054.2002.1140312.x
L.M. Raamskonk, B. Teusink, D. Broadhurst, N. Zhang, A. Hayes, M.C. Walsh, J.A. Berden, K.M. Brindle, D.B. Kell, J.J. Rowland, H.V. Westerhoff, K.V. Dam, S.G. Oliver, A functional genomic strategy that uses metabolome data to reveal the phenotype of silent mutations, Nature Biotechnology, 19, 45-50 (2001). Doi: https://doi.org/10.1038/83496
J. Schripsema, Application on NMR in plant metabo-lomics: techniques, problems and prospects, Phytochemical Analysis, 21, 14-21 (2009). Doi: https://doi.org/10.1002/pca.1185
H.K. Kim, Y.H. Choi, NMR-based metabolomics: where do we stand, where do we go? Trends in Biotechnology, 29, 267-275 (2011). Doi: https://doi.org/10.1016/j.tibtech.2011.02.001
S. Latif, G. Chiapusio, L.A. Weston, Chapter two. Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research, 82, 19-54 (2017). Doi: https://doi.org/10.1016/bs.abr.2016.12.001
F. Maraschin-Silva, M. Aquila, Potencial alelopático de espécies nativas na germinação e crescimento inicial de Lactuca sativa L. (Asteraceae), Acta Botanica Brasilica, 20, 61-69 (2006). Doi: http://dx.doi.org/10.1590/S0102-33062006000100007
K. Jabran, G. Mahajan, V. Sardana, B.S. Chauhan, Allelopathy for weed control in agricultural systems, Crop Protection, 72, 57-65 (2015). Doi: https://doi.org/10.1016/j.cropro.2015.03.004
H. Makol, A. Ndakidemi, Allelopathy as protectant, defence and growth stimulants in legume cereal mixed culture systems, New Zealand Journal of Crop and Horticultural Science, 40, 161-186 (2012). Doi: https://doi.org/10.1080/01140671.2011.630737
U. Blum, T.M. Gerig, A.D. Worsham, D. King, Modification of allelopathic effects of p-coumaric acid on morning glory seedling biomass by glucose, methionine, and nitrate, Journal of Chemical Ecology, 19, 2791-2811 (1993). Doi: https://doi.org/10.1007/BF00980584
A.G. Ferreira, M.E.A. Aquila, Alelopatia: Uma área emergente da ecofisiologia, Revista Brasileira de Fisiologia Vegetal, 12, 175-204 (2000).
T.D. Khanh, T.D., Xuan, I.M. Chung, Rice allelopathy and the possibility for weed management, Annals of Applied Biology, 151, 325-339 (2007). Doi: https://doi.org/10.1111/j.1744-7348.2007.00183.x
E. Mcniven, E.M.S. McNiven, J.B. German, C.M. Slupsky, Analytical metabolomics: nutritional opportunities for personalized health, The Journal of Nutritional Biochemistry, 22, 995-1002 (2011). Doi: https://doi.org/10.1016/j.jnutbio.2011.05.016
O. Fiehn, Metabolomics-the link between genotypes and phenotypes, Plant Molecular Biology, 48, 155-171 (2002). Doi: https://doi.org/10.1023/A:1013713905833
X. Lu, X. Zhao, C. Bai, C. Zhao, G. Lu, G. Xu, LC–MS-based metabonomics analysis. Journal of Chromatography, 866, 64-76 (2008). Doi: https://doi.org/10.1016/j.jchromb.2007.10.022
A. Zhang, H. Sun, P. Wang, Y. Han, X. Wang, Modern analytical techniques in metabolomics analysis, Analyst, 137, 293-300 (2012). Doi: https://doi.org/10.1039/c1an15605e
H. Kato-Noguchi, J.P. Reuben, The role of momilactones in rice allelopathy, Journal of Chemical Ecology, 39, 175-185 (2013). Doi: https://doi.org/10.1007/s10886-013-0236-9
L. Zhao-Hui, Q. Wang, X. Ruan, C.D. Pan, D.A. Jiang, Phenolics and plant allelopathy, Molecules, 15, 8933-8952 (2010). Doi: https://doi.org/10.3390/molecules15128933
K. Rafinska, P. Pomastowski, O. Wrona, R. Górecki, B. Buszewski, Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry, Phytochemistry Letters, 20, 520-539 (2017). Doi: https://doi.org/10.1016/j.phytol.2016.12.006
I. Kowalska, A. Stochmal, I. Kapusta, B. Janda, C. Pizza, S. Piacente, W. Oleszek, Flavonoids from barrel medic (Medicago truncatula) aerial parts, Journal of Agricultural and Food Chemistry, 55, 2645-2652 (2007). Doi: https://doi.org/10.1021/jf063635b
O. Koloren, Allelopathyc effects of Medicago sativa L. and Vicia cracca L. leaf and root extracts on weeds, Pakistan Journal of Biological Science, 10, 1639-1642 (2007). Doi: https://doi.org/10.3923/pjbs.2007.1639.1642
A. Stochmal, W. Oleszek, Seasonal and structural changes of flavones in alfalfa (Medicago sativa) aerial parts, Journal of Food, Agriculture & Environment, 5, 170-174 (2007). Doi: https://doi.org/10.1234/4.2007.995
T. Song, H. Xu, N. Sun, L. Jiang, P. Tian, Y. Yong, W. Yang, H. Cai, G. Cui, Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress, Frontiers in Plant Science, 8, 1208 (2017). Doi: https://doi.org/10.3389/fpls.2017.01208
W. Fan, G. Ge, Y. Liu, W. Wang, L. Liu, Y. Jia, Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages, Plant Biology, 18, 78 (2018). Doi: https://doi.org/10.1186/s12870-018-1291-8
I. Aranjuelo, G. Tcherkez, G. Molero, F. Gilard, J.C. Avice, S. Nogués, Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction, Journal of Experimental Botany, 64, 885-897 (2013). Doi: https://doi.org/10.1093/jxb/ers367
H.M. Zubair, J.E. Pratley, G.A. Sandral, A. Humphries, Allelopathic interference of alfalfa (Medicago sativa L.) genotypes to annual ryegrass (Lolium rigidum), Journal of Plant Research, 130, 647-658 (2017). Doi: https://doi.org/10.1007/s10265-017-0921-9
M. Walter, E. Marchesan, Phenolic compounds and antioxidant activity of rice, Brazilian Archives of Biology and Technology, 54, 371-377 (2011). Doi: https://doi.org/10.3390/foods5020027
K. Maruyama, K. Urano, K. Yoshiwara, Y. Morishita, N. Sakurai, H. Suzuki, M. Kojima, H. Sakakibara, D. Shibata, K. Saito, K. Shinozaki, K. Yamaguchi-Shinozaki, Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts, Plant Physiology, 164, 1759-1771 (2014). Doi: https://doi.org/10.1104/pp.113.231720
T. Shimizu, E. Nakazono , Nagaoka, T. Uehara,Ichiki, T. Sasaya, T. Omura, Targeting specific genes for RNA interference is crucial to the development of strong resistance to rice stripe virus, Plant Biotechnology Journal, 9, 503-512 (2011). Doi: https://doi.org/10.1111/j.1467-7652.2010.00571.x
M. Azmi, M.Z. Abdullah, Y. Fujii, Exploratory study on allelopathic effect of selected Malaysian rice varieties and rice field weed species, Journal of Tropical Agriculture and Food Science, 28, 39-54 (2000).
F. Yu, S.H Kim, N.-S. Kim, J.-H. Lee, D.-H. Bae, K.-T. Lee, Composition of solvent-fractionated rice bran oil, Journal of Food Lipids, 13(3), 286-297 (2006). Doi: https://doi.org/10.1111/j.1745-4522.2006.00052.x
Y. Okazaki, H. Otsuki, T. Narisawa, M. Kobayashi, S. Sawai, Y. Kamide, M. Kusano, T. Aoki, M.Y. Hirai, K. Saito, A new class of plant lipid is essential for protection against phosphorus depletion, Nature Communications, 4, 1510 (2013). Doi: https://doi.org/10.1038/ncomms2512
F. Matsuda, Y. Okazaki, A. Oikawa, M. Kusano, R. Nakabayashi, J. Kikuchi, J. Yonemaru, K. Ebana, M. Yano, K. Saito, Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis, The Plant Journal, 70, 624-636 (2012). Doi: https://doi.org/10.1111/j.1365-313X.2012.04903.x
M. Kusano, Z. Yang, Y. Okazaki, R. Nakabayashi, A. Fukushima, K. Saito, Using metabolomic approaches to explore chemical diversity in rice, Molecular Plant, 8, 58-67 (2015). Doi: https://doi.org/10.1093/mp/ssu125
L. Campbell, C.B. Rempel, J.P.D. Wanasundara, Canola/Rapeseed Protein: Future Opportunities and Directions-Workshop Proceedings of IRC, Plants(Basel), 5(2), 17 (2016). Doi: https://doi.org/10.3390/plants5020017
C.D. Melo-Giaquinto, G.K. Martins de Souza, V. Fonseca-Caetano, G.M. Vinhas, Evaluation of the mechanical and thermal properties of PHB/canola oil films, Polimeros, 27, 201-207 (2017). Doi: http://dx.doi.org/10.1590/0104-1428.10716
C.J. Zheng, Y. Jung-Sung, L. Tae-Gyu, C. Hee-Young, K. Young-Ho, K. WonGon, Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids, FEBS Letters, 579, 5157-5162 (2005). Doi: http://dx.doi.org/10.1016/j.febslet.2005.08.028
B.M. Biswapriya, Cataloging the Brassica napus seed metabolome, Cogent Food & Agriculture, 2, 1254420 (2016). Doi: https://doi.org/10.1080/23311932.2016.1254420
C. Bottcher, E. von Roepenack-Lahaye, J. Schmidt, C. Schmotz, S. Neumann, D. Scheel, S. Clemens, Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis, Plant Physiology, 147, 2107-2120 (2008). Doi: https://doi.org/10.1104/pp.108.117754
J.D. Clarke, D.C. Alexander, D.P. Ward, J.A. Ryals, M.W. Mitchell, J.E. Wulff, L. Guo, Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome, Scientific Reports, 3, 3082 (2013). Doi: https://doi.org/10.1038/srep03082
H. Vigeolas, C. Chinoy, E. Zuther, B. Blessington, P. Geigenberger, C. Domoney, Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds, Plant Physiology, 146,
-82 (2008). Doi: https://doi.org/10.1104/pp.107.111369
F. Mounet, M. Lemaire-Chamley, M. Maucourt, C. Cabasson, J.L. Giraudel, C. Deborde, R. Lessire, P. Gallusci, A. Bertrand, M. Gaudillère, C. Rothan, D. Rolin, A. Moing, Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA, Metabolomics, 3, 273-288 (2007). Doi: https://doi.org/10.1007/s11306-007-0059-1
M. Kortesniemi, A.L. Vuorinen, J. Sinkkonen, B. Yang, A. Rajala, H.A. Kallio, NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa), Food Chemistry, 1172, 63-70 (2015). Doi: https://doi.org/10.1016/j.foodchem.2014.09.040
M. Asaduzzaman, J.E. Pratley, M. An, D.J. Luckett, L. Deirdre, Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals, Frontiers in Plant Science, 5, 765 (2015). Doi: https://doi.org/10.3389/fpls.2014.00765
M.F. Turner, A.L. Heuberger, J.S. Kirkwood, C.C. Collins, E.J. Wolfrum, C.D. Broeckling, J.E. Prenni, C.E. Jahn, Non-targeted metabolomics in diverse sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis, Frontiers in Plant Science, 7, 953 (2016). Doi: https://doi.org/10.3389/fpls.2016.00953
R.G. Belz, K. Hurle, Differential exudation of two benzoxazinoids: some of the determining factors for seedling allelopathy of Triticeae species, Journal of Agricultural and Food Chemistry, 53, 250-261 (2005). Doi: https://doi.org/10.1021/jf048434r
M. Czarnota, R.N. Paul, L.A. Weston, S.O. Duke, Anatomy of sorgoleonesecreting root hairs of Sorghum species, International Journal of Plant Sciences, 164, 861-866 (2003). Doi: https://doi.org/10.1086/378661
D.H. Netzley, J.L. Riopel, G. Ejeta, L.G. Butler, Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor), Weed Science, 36, 441-446 (1988). Doi: https://doi.org/10.1017/S0043174500075172
C.I. Nimbal, J.F. Pedersen, C.N. Yerkes, L.A. Weston, S.C. Weller, Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. Journal of Agricultural and Food Chemistry, 44, 1343-1347 (1996). Doi: https://doi.org/10.1021/jf950561n
K. Jandová, P. Dostál, T. Cajthaml, Z. Kameník, Intraspecific variability in allelopathy of Heracleum mantegazzianum is linked to the metabolic profile of root exudates, Annals of Botany, 115, 821-831 (2015). Doi: https://doi.org/10.1093/aob/mcu265
S. Copaja, E. Villarroel, H.R. Bravo, L. Pizarro, V.H. Argandoña, Hydroxamic acids in Secale cereale L. And the relationship with their antifeedant and allelopathic properties, Zeitschrift für Naturforschung, 61, 670-676 (2006). Doi: https://doi.org/10.1515/znc-2006-9-1010
L.A. Weston, L. Weston, D. Skoneczny, P. Weston, J. Weidenhamer, Metabolic profiling: an overview – New approaches for the detection and functional analysis of biologically active secondary plant products, Journal of Allelochemical Interactions, 1(2), 15-27 (2015).
N.O. Bertholdsson, Early vigour and allelopathy - two useful traits for enhanced barley and wheat competitiveness with weeds, Weed Research, 45, 94-102 (2005). Doi: https://doi.org/10.1111/j.1365-3180.2004.00442.x
H. Wu, J. Pratley, D. Lemerle, T. Haig, Allelopathy in wheat (Triticum aestivum), Annals of Applied Biology, 139, 1-9 (2001). Doi: https://doi.org/10.1111/j.1744-7348.2001.tb00124.x
S.S. Krogh, S.J.M. Mensz, S.T. Nielsen, A.G. Mortensen, C. Christophersen, I.S. Fomsgaard, Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts, Journal of Agricultural and Food Chemistry, 54, 1064-1074 (2006). Doi: https://doi.org/10.1021/jf051147i
Z. Huang, T. Haig, H. Wu, M. An, J. Pratley, Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat, Journal of Chemical Ecology, 29(10), 2263-2279 (2003). Doi: https//doi.org/10.1023/a:1026222414059
F. Lavergne, B.D. Corey, C.M. Darren, H.D. Scott, P.B. Frank, J.E. Courtney, H.L. Adam, GC-MS Metabolomics to evaluate the composition of plant cuticular waxes for four Triticum aestivum cultivars, International Journal of Molecular Sciences, 19(2), 249 (2018). Doi: https://doi.org/10.3390/ijms19020249
C. Wang, K. Jiang, J. Zhou, J. Liu, Allelopathic suppression by Conyza canadensis depends on the interaction between latitude and the degree of the plant’s invasion. Acta Botanica Brasilica, 312, 212-219 (2017). Doi: http://dx.doi.org/10.1590/0102-33062017abb0045
S. Bosch, J. Rohwer, F.C. Botha, The sugarcane metabolome, Proceedings of the South African Sugar Technology Association, 7, 129-133 (2003).
D. Garbe, Cinnamic Acid, Ullmann?s Encyclopedia of Industrial Chemistry, WileyVCH, Weinheim, 2012. Doi:https://doi.org/10.1002/14356007.a07_099
P.N. Rajendra, A. Karthikeyan, S. Karthikeyan, B.V. Reddy, Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line, Molecular and Cellular Biochemistry, 349, 11-19 (2011).Doi: https://doi.org/10.1007/s11010-010-0655-7
M.R. Olthof, P.C. Hollman, M.B. Katan, Chlorogenic acid and caffeic acid are absorbed in humans, The Journal of Nutrition, 131, 66-71 (2001). Doi: https://doi.org/10.1093/jn/131.1.66
W.D. Hoff, P. Düx, K. Hård, B. Devreese, I.M. Nugteren-Roodzant, W. Crielaard, R. Boelens, R. Kaptein, J. van Beeumen, K.J. Hellingwerf, Thiol esterlinked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry, Biochemistry, 33, 13959-13962 (1994). Doi: https://doi.org/10.1021/bi00251a001
W. Mao, M.A. Schuler, M.R. Berenbaum, Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera, Proceedings of the National Academy of Sciences of the United States of America, 110, 8842-8846 (2013). Doi: https://doi.org/10.1073/pnas.1303884110
J.D. Douros, J.W. Frankenfeld, Effects of culture conditions on production of trans-cinnamic acid from alkylbenzenes by soil microorganisms, Journal of Applied Microbiology, 16, 320-325 (1968). Doi: https://doi.org/10.1128/am.16.2.320-325.1968
R.D. Hatfield, J. Ralph, J.H. Grabber, Cell wall cross-linking by ferulates and diferulates in grasses, Journal of the Science of Food and Agriculture, 79, 403-407 (1999). Doi: https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<403::AIDJSFA263>3.0.CO;2-0
M.T. Abdul, G. Abnish, K. Amit, S. Divya, Medicarpin inhibits osteoclastogenesis and has nonestrogenic bone conserving effect in ovariectomized mice, Molecular and Cellular Endocrinology, 325, 101-109 (2010). Doi: https://doi.org/10.1016/j.mce.2010.05.016
N.S. Nemeria, G. Gerfen, P.R. Nareddy, L. Yang, X. Zhang, M. Szostak, F. Jordan, The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species, Free Radical Biology and Medicine, 115, 136-145 (2018). Doi: https://doi.org/10.1016/j.freeradbiomed.2017.11.018
J. Levine, T.E. Eble, H. Fischbach, Preparation of o-hydroxyphenylacetic acid. Journal of the American Chemical Society, 70(5), 1930 (1948). Doi: https://doi.org/10.1021/ja01185a084
S. Kim, H. Park, E. Park, S. Lee, Cytotoxic and antitumor activity of momilactone B from rice hulls, Journal of Agricultural and Food Chemistry, 55, 1702-1706 (2007). Doi: https://doi.org/10.1021/jf062020b
K. Sun-Jung, P. Hae-Ryong, P. Eunju, L. Seung-Cheol, Cytotoxic and antitumor activity of momilactone B from rice hulls, Journal of Agricultural and Food Chemistry, 55, 1702-1706 (2007). Doi: https://doi.org/10.1021/jf062020b
H. Lu, Z. Tian, Y. Cui, Z. Liu, X. Ma, Chlorogenic acid: A comprehensive review of the dietary sources, processing effects,bioavailability, beneficial properties, mechanisms of action, and future directions, Comprehensive Reviews in Food Science and Food Safety, 19(6), 3130-3158 (2020). Doi: https://doi.org/10.1111/1541-4337.12620
Ş. Adem, V. Eyupoglu, I. Sarfraz, A. Rasul, A.F. Zahoor, M. Ali, M. Abdalla, I.M Ibrahim, A.A. Elfiky, Caffeic acid derivatives (CAFDs) as inhibitors of SARSCoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19, Phytomedicine, 85, 153310 (2021). Doi: https://doi.org/10.1016/j.phymed.2020.153310
C. Chunye, Sinapic acid and its derivatives as medicine in oxidative stressinduced diseases and aging, Oxidative Medicine and Cellular Longevity, 2016, 3571614 (2016). Doi: https://doi.org/10.1155/2016/3571614
B. Muller-Roeber, C. Pical, Inositol phospholipid metabolism in arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C, Plant Physiology, 130(1), 22-46 (2002). Doi: https//doi.org/10.1104/pp.004770
J.N.G. Stanley, M. Selva, A.F. Masters, A. Perosa, Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin building blocks, Green Chemistry, 15, 3195-3204 (2013). Doi: https://doi.org/10.1039/C3GC40334C
J.Y. Yang, M.A. Della-Fera, S. Rayalam, S. Ambati, D.L. Hartzell, H.J. Park, C.A. Baile, Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin, Life Sciences, 82, 1032-1039 (2008). Doi: https://doi.org/10.1016/j.lfs.2008.03.003
S. Yannai, Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients, Chapman & Hall/CRC, Boca Raton (FL), 2004.
A. Khan, W. Heng, Y. Wang, J. Qiu, X. Wei, S. Peng, S. Saleem, M. Khan, S.S. Ali, D.Q. Wei, In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro), Phytotherapy Research, 35, 2841-2845 (2021). Doi: https//doi.org/10.1002/ptr.6998
Y. Zhan, W. Ta, W. Tang, R. Hua, J. Wang, C. Wang, W. Lu, Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro, Drug Development Research, 82(8), 1124-1130 (2021). Doi: https://doi.org/10.1002/ddr.21815
B.L.C. de Almeida, M.L. Ferreira, A.J. Demuner, A.A. Da Silva, R.C. Pereira, Preparation and phytotoxicity of sorgoleone analogues, Química Nova, 24(6), 751-755 (2001). Doi: https://doi.org/10.1590/S0100-40422001000600008
B.R. Scott, M.A. Pathak, G.R. Mohn, Molecular and genetic basis of furocoumarin reactions Mutation Research, 39, 29-74 (1976). Doi: https://doi.org/10.1016/0165-1110(76)90012-9
M.O. Hindam, R.H. Sayed, K. Skalicka-Wozniak, B. Budzynska, N.S. El Sayed, Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer’s disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation, Phytotherapy Research, 34, 2351-2365 (2020). Doi: https://doi.org/10.1002/ptr.6686
L. Costantino, G. Rastelli, M.C. Rossi, A. Albasini, Quantitative measurement of proton dissociation and tautomeric constants of apigeninidin, Journal of the Chemical Society, Perkin Transactions, 2, 227 (1995). Doi: https://doi.org/10.1039/P29950000227
E. Kellenberger, I. Kuhn, F. Schuber, H. Muller-Steffner, Flavonoids as inhibitors of human CD38, Bioorganic & Medicinal Chemistry Letters, 21, 3939-3942 (2011). Doi: https://doi.org/10.1016/j.bmcl.2011.05.022
J. Boslett, C. Hemann, Y.J. Zhao, H.C. Lee, J.L. Zweier, Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H), The Journal of Pharmacology and Experimental Therapeutics, 361, 99-108 (2017). Doi: https://doi.org/10.1124/jpet.116.239459
D. Walters, B. Meurer-Grimes, I. Rovira, Antifungal activity of three spermidine conjugates, FEMS Microbiology Letters, 201(2), 255-258 (2001). Doi: https://doi.org/10.1016/S0378-1097(01)00278-6
J.C. Taylor, L. Rapport, G.B. Lockwood, Octacosanol in human health, Nutrition, 19, 192-195 (2003). Doi: https://doi.org/10.1016/S0899-9007(02)00869-9
S.R. Snider, Octacosanol in Parkinsonism, Annals of Neurology, 16(6), 723 (1984). Doi: https://doi.org/10.1002/ana.410160615
T. Wang, Y.Y. Liu, X. Wang, N. Yang, H.B. Zhu, P.P. Zuo, Protective effects of octacosanol on 6-hydroxydopamine-induced Parkinsonism in rats via regulation of ProNGF and NGF signaling, Acta Pharmacologica Sinica, 31, 765-774 (2010). Doi: https://doi.org/10.1038/aps.2010.69
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Nguyen Phuong Mai, Tran Dang Xuan. (2025). A review on the utility potential of rice derived products in weed management. Weed Research, 65(1) https://doi.org/10.1111/wre.12678.
2. Bárbara Mendes Cavalheiro, Anísio Correa da Rocha. (2024). Allelopathy of the essential oil of Fortunella margarita (Lour.) Swingle) in the germination on Helianthus annuus L. and Hordeum vulgare L.. Brazilian Journal of Science, 3(5), p.65. https://doi.org/10.14295/bjs.v3i5.572.
3. Marcelly de Souza Ventura, Thales Castilhos de Freitas, Ricardo Montianele de Castro, Mariana Couto Cruz, Kelly Antunes, Taísa Nascimento de Souza, Breno Moreira, Fabrício Alvim Carvalho. (2024). Floristic and structural changes in a neotropical urban novel forest over 13 years. Southern Forests: a Journal of Forest Science, 86(4), p.311. https://doi.org/10.2989/20702620.2024.2376115.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13