Publicado
Preliminary research on metalized phthalocyanines synthesis. Evaluation as potential photosensitizer in photodynamic therapy
Investigación preliminar sobre síntesis de ftalocianinas metalizadas. Evaluación como potencial fotosensibilizador en terapia fotodinámica
Pesquisa preliminar sobre a síntese de ftalocianinas metalizadas. Avaliação como potencial fotosensibilizador em terapia fotodinâmica
DOI:
https://doi.org/10.15446/rcciquifa.v51n1.102717Palabras clave:
Phthalocyanine, photosensitizer, photodynamic therapy, singlet oxygen, photo-oxidation (en)Ftalocianina, fotosensibilizador, terapia fotodinámica, oxígeno singlete, fotooxidación (es)
fotosensibilizador, terapia fotodinâmica, Ftalocianina, oxigênio singlete, foto-oxidação (pt)
Descargas
Introduction: Phthalocyanines are porphyrin-based dyes. They have plenty applications in different fields, including biomedical and chemical research. From a
chemical point of view, Phthalocyanines are macrocyclictetraaza compounds,
which mainly are made up of isoindol groups that confer aromaticity and planarity
on Phthalocyanine structure. Unlike other kinds of porphyrin compounds, Phthalocyanine structure is able to chelate a lot of metals, which more often contribute
to their huge variety of functions, including ROS generation, fluorescence, absorption spectra, and others. Aim: To evaluate phthalocyanines compounds owing their
excellent photochemical and pharmaceutical properties that explain their wide use
at the clinical and medical level. Methodology: We have carried out a meticulous
search for scientific works related to the subject between April 2020 and April 2021,
the most of them were written in English. As a result, we can say that, for studying
Phthalocyanines’ properties, the work can be separated into two issues: synthesis of
the metalized phthalocyanines and photochemical and photobiological properties.
Results: Phthalocyanines have plenty properties that are desirable to biomedical
and pharmaceutical research. Because of their photochemical and photobiological
properties, as well as ROS generation, Phthalocyanines are one of the photosenstitizers most widely used in photodynamic therapy. They also have antibacterial, antiviral and anticancer activities. In this sense, Phthalocyanine synthesis and in vitro
studies are a very important scientific issue.
Introducción: las ftalocianinas son tintes porfirínicos. Tienen muchas aplicaciones
en diferentes campos, incluida la investigación biomédica y química. Desde el punto
de vista químico, las ftalocianinas son compuestos macrocíclicos de tetraaza. Se
componen principalmente de grupos isoindol que confieren aromaticidad y planaridad a la estructura de la ftalocianina. Esta última es capaz de quelar muchos metales,
que con mayor frecuencia contribuyen a su gran variedad de funciones, incluida la
generación de EROS, la fluorescencia, los espectros de absorción y otros. Objetivo: evaluar algunos derivados de ftalocianinas gracias a las excelentes propiedades
fotoquímicas y farmacéuticas que explican su amplio uso a nivel clínico y médico.
Metodología: hemos realizado una búsqueda minuciosa de trabajos científicos relacionados con el tema entre abril de 2020 y abril de 2021, la mayoría de ellos escritos
en inglés. Como resultado, podemos decir que, para estudiar las propiedades de las
ftalocianinas, el trabajo se puede dividir en dos temas: síntesis de las ftalocianinas
metalizadas y propiedades fotoquímicas y fotobiológicas. Resultados: las ftalocianinas tienen muchas propiedades que son deseables para la investigación biomédica
y farmacéutica. Por sus propiedades fotoquímicas y fotobiológicas, así como por la
generación de EROS, las ftalocianinas son uno de los fotosensibilizadores más utilizados en terapia fotodinámica. También tienen actividades antibacterianas, antivirales y anticancerígenas. En este sentido, la síntesis de ftalocianina y los estudios in
vitro son un tema científico muy importante.
Introdução: as ftalocianinas são corantes à base de porfirinas. Eles têm muitas
aplicações em diferentes campos, incluindo pesquisas biomédicas e químicas. Do
ponto de vista químico, as ftalocianinas são compostos macrocíclicos tetraaza, que
são constituídos principalmente por grupos isoindol que conferem aromaticidade e
planaridade à estrutura das ftalocianinas. Ao contrário de outros tipos de compostos
de porfirina, a estrutura da ftalocianina é capaz de quelar uma grande quantidade de
metais, que mais frequentemente contribuem para sua enorme variedade de funções,
incluindo geração de ROS, fluorescência, espectro de absorção e outros. Objetivo:
avaliar alguns derivados de ftalocianinas graças às excelentes propriedades fotoquímicas e farmacêuticas que explicam a sua ampla utilização a nível clínico e médico.
Metodologia: efetuamos uma busca minuciosa de trabalhos científicos relacionados ao assunto entre abril de 2020 e abril de 2021, a maioria deles redigidos na
língua inglesa. Como resultado, podemos dizer que, para estudar as propriedades
das ftalocianinas, o trabalho pode ser dividido em duas questões: síntese das ftalocianinas metalizadas e propriedades fotoquímicas e fotobiológicas. Resultados: as
ftalocianinas têm muitas propriedades desejáveis para a pesquisa biomédica e farmacêutica. Pelas suas propriedades fotoquímicas e fotobiológicas, além da geração de
ROS, as ftalocianinas são um dos fotossensibilizantes mais amplamente utilizados na
terapia fotodinâmica e processos fototóxicos. Eles também têm atividades antibacteriana, antiviral e anticâncer. Nesse sentido, a síntese de ftalocianina e os estudos in
vitro são uma questão científica muito importante.
Referencias
A.T. García-Suarez, Síntesis y caracterización de la ftalocianina de aluminio sulfonada mediante ácido clorosulfónico, B. Sc. thesis, Universidad Nacional de Colombia y Universidad Distrital Francisco José de Caldas, Bogotá, 2016, 123 p.
K. Ishii, Functional singlet oxygen generators based on phthalocyanines, Coord. Chem. Rev., 256, 1556-1568 (2012).
D. Wohrle, G. Schnurpfeil, S. Makarov, A. Kazarin, O. Suvorova, Practical applications of phthalocyanines from dyes and pigments to materials for optical, electronic and photo-electronic devices, Macroheterocycles, 5(3), 191-202 (2012).
F. Fitzgerald, Photodynamic Therapy (PDT): Principles, Mechanism and Applications, Nova Science Publishers, New York (NY), 2017, pp. 1-223.
A. M. D’Ascanio, A study of solvent and metal effects on the formation of phtalocyanines at room temperature, M Sc. thesis, York University, Ontario, 1999, 135 p.
W. Chidawanyika, A. Ogunsipe, T. Nyokong, Syntheses and photophysics of new phthalocyanine derivatives of zinc, cadmium and mercury, New J. Chem., 31, 377-384 (2007).
A. Wang, Lu. Zhou, L. Jiang, Synthesis of a novel water-soluble zinc phthalocyanine and its CT DNA-damaging studies, Spectrochimica Acta A: Mol. Biomol. Spectrosc., 115, 445-451 (2013).
E. Çelenk-Kaya, M. Durmuş, E. Yanmaz, H. Kantekin, Synthesis and spectral and thermal characterization of new metal-free and metallophthalocyanines: invesgation of their photophysical, photochemical, and thin film properties, Turkish J. Chem., 38, 1118-1134 (2014).
I. Denekamp, F. Veenstra, P. Jungbacker, G. Rothenberg, A simple synthesis of symmetric phthalocyanines and their respective perfluoro and transition-metal complexes, Appl. Organomet. Chem., 33(5), e4872 (2019).
N. Sergeeva, M. Senge, Photochemical transformations involving porphyrins and phthalocyanines, in: A. Griesbeck, M. Oelgemoller, F. Ghetti (editors),CRC Handbook of Organic Photochemistry and Photobiology, Taylor & Francis Group, New York, 2012, pp. 831-879.
T. Nyokong, V. Ahsen, Photosensitizers in Medicine, Environment, and Security, Springer, London, 2012.
M.P. De Filippis, D. Dei, L. Fantetti, G. Roncucci, Synthesis of a new water-soluble octa-cationic phthalocyanine derivative for PDT, Tetrahedron Lett., 41(47), 9143-9147 (2000).
F. Vargas, R. Sevilla, S. Espinoza, S. Herrera, V. Villegas, Photoinduced antibacterial properties of Ni, Zn and Cu complexes of mesotetracarboxyphenylporphyrin on Escherichia coli, XI Scientific Congress of the Universidad de Oriente, 25th to 27 th November, 2020, UDO, Cumaná, Venezuela.
N. Mehraban, Design and synthesis of phthalocyanine macrocycles for photodynamic therapy: A combined study using molecular modeling and drug delivery, Ph. D. thesis,
North Carolina State University, Raleigh, North Carolina, 2015, 204 p.
B. Kharisov, L. Garza-Rodríguez, L. Blanco, M. Méndez, Técnicas para la preparación de ftalocianinas, Ingenierías, 7(22), 71-84 (2004).
K.S. Jung, J.H. Kwon, S.M. Shon, J.P. Ko, J.S. Shin, S.S. Park, Microwave synthesis of metal phthalocyanines under solvent-free conditions, J. Materials Science, 39, 723-726 (2004).
F. Vargas, T. Zoltan, C. Izzo, UV-Vis spectrophotometrical and analytical methodology for the determination of singlet oxygen in new antibacterials drugs, Anal. Chem. Insights, 2, 111-118 (2007).
R. Ruiz-González, A. Rodríguez-Pulido, J. Torra, S. Nonell, C. Flors, Genetically encoded singlet oxygen photosensitizers, in: S. Nonell, C. Flors (editors), Singlet Oxygen: Applications in Biosciences and Nanosciences, Royal Society of Chemistry, London, 2016, pp. 271-286.
I. Kraljic, S.E. Mohsni, A new method for the detection of singlet oxygen in aqueous solutions, Photochem. Photobiol., 28(4), 577-581 (1978).
F. Vargas, T. Zoltan, F. Pujol, H. Rangel, Comparative antiviral (HIV) photoactivity of metalized meso-tetraphenylsulfonated porphyrins, Med. Chem., 4(2), 138-145 (2008).
F. Vargas,T. Zoltan, O. Oviedo, M. Inojosa, J. Vivas, Antibacterial photoactivity and photosensitized oxidation of phenols with meso-tetra-(4-benzoate, 9-phenanthryl)-porphyrin and its metal complexes (Zn and Cu), J. Coord. Chem., 67(10), 1715-1730 (2014).
J. Lee, D. Chen, Q. Zhang, Y. Shen, Studies on the synthesis of two hydrophilic hypocrellin derivatives with enhanced absorption in the red spectral region and
on their photogeneration of O2- and O2 (1Dg), J. Photochem. Photobiol. B. Biol., 71(1-3), 43-50 (2003).
J. Lee, H. Seliger, Quantum yields of the luminol chemiluminiscence reaction in aqueous and aprotic solvente, Photochem. Photobiol., 15(2), 227-237 (1972).
H.H. Wasserman, J.R. Scheffer, J.L. Cooper, Singlet oxygen reactions with 9,10-diphenylanthracene peroxide, J. Am. Chem. Soc., 94(14), 4991-4996 (1972).
K. Lawson-Wood, S. Upstone, K. Evans, Determination of relative fluorescence quantum yields using FL6500 fluorescence spectrometer, Fluorescence Spectroscopy Application Note, PerkinElmer, Inc., Seer Green, UK, 2018, 5 p.
F. Vargas, H. Méndez, A. Fuentes, J. Sequera, G. Fraile, M. Velásquez, Photosensitizing activity of the thiocolchicoside. Photochemical and in vitro phototoxicity studies, Pharmazie, 6(1), 83-88 (2001).
C. Von Sonntag, Free-Radical-Induced DNA Damage and Its Repais, Springer, Heidelberg, 2006.
F. Vargas, T. Zoltan, C. Rivas, V. López, J. Pérez, A. Biasutto, Synthesis, photochemical and photoinduced antibacterial activity studies of meso-tetra (pyren1-yl) porphyrin and its Ni, Cu and Zn somplexes, Sci. Pharm., 78, 767-789 (2010).
B. Barut, C. Yalçın, U. Demirbas, H.T. Akçay, H. Kantekin, A. Ozel, The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties, J. Mol. Struct., 1218, 128502 (2020).
C. Wadzanai, O. Abimbola, N. Tebello, Syntheses and photophysics of new phthalocyanine derivatives of zinc, cadmium and mercury, New J. Chem., 31, 377-384 (2006).
I.O. Bacellar, T.M. Tsubone, C. Pavani, M.S. Baptista, Photodynamic efficiency: From molecular photochemistry to cell death, Int. J. Mol Sci., 16(9), 20523-20559 (2015).
M.C. GarcíaVior, J. Marino, L.P. Roguin, A. Sosnik, J. Awruch, Photodynamic effects of zinc(II) phthalocyanine-loaded polymeric micelles in human nasopharynx KB carcinoma cells, Photochem. Photobiol., 89(2), 492-500 (2013).
M. León, F. Vargas, Metalized phthalocyanines as potential photosensitizer in photodynamic therapy, 19th Congress of the European Society for Photobiology, virtual conference, SP2021, 30 August to 3 September 2021, Salzburg, Austria.
A.T. Gomes, M.G. Neves, J.A. Cavaleiro, Cancer, photodynamic therapy and porphyrin-type derivatives, An. Acad. Bras. Cienc., 90(1-2), 993-1026 (2018).
F. Ayaz, A. Yuzer, M. Ince, Immunostimulatory effect of zinc phthalocyanine derivatives on macrophages based on the pro-inflammatory TNFα and IL1β cytokine production levels, Toxicol. In Vitro, 53, 172-177 (2018).
A.R. Zamani, M.R. Mashayekhi, M.F. Jadid, Y. Faridvand, H. Tajalli, R. Rahbarghazi, Photo-modulation of zinc phthalocyanine-treated breast cancer cell line ZR-75-1 inhibited the normal tumor activity in vitro, Lasers Med. Sci., 33(9), 1969-1978 (2018).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2022 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13