Publicado
Termoquímica computacional: en la búsqueda de la precisión química
Computational thermochemistry: searching chemical accuracy
Termoquímica computacional: em busca da precisão química
DOI:
https://doi.org/10.15446/rcciquifa.v51n2.105373Palabras clave:
termoquímica computacional, química cuántica, estructura molecular, métodos compuestos, precisión química (es)Computational thermochemistry, Quantum chemistry, Molecular structure, Composite methods, Chemical accuracy (en)
termoquímica computacional, química quântica, estrutura molecular, métodos compostos, precisão química (pt)
Descargas
Introducción: la termoquímica computacional es un campo de gran interés por sus diversas aplicaciones en diferentes campos de la química. En la actualidad, con el avance en el desarrollo de los supercomputadores se pueden emplear diversas metodologías que emplean cálculos de estructura electrónica para estimar valores termodinámicos con errores ~ 1,0 kcal/mol en comparación con los datos experi-mentales. Metodología: en este artículo se describen brevemente los principales métodos compuestos empleados en la termoquímica computacional como la serie de Petersson, los métodos Weizmann, el modelo HEAT y con especial énfasis en las teorías Gaussian-n. Aplicaciones: diversas aplicaciones de la termoquímica computacional se presentan en este trabajo tales como el estudio de la reactividad y las estabilidades de nuevos derivados de compuestos químicos con potencialidades como fármacos, estudios de contaminantes en la química de la atmosfera donde se estiman valores importantes de entalpias de formación sobre compuestos derivados del gas de efecto invernadero SF6, estudios de compuestos derivados del petróleo de potencial importancia como nuevos combustibles y el desarrollo de explosivos con estimaciones energéticas de las entalpias de disociación de enlace y de combustión de nuevos compuestos orgánicos. Conclusiones: la termoquímica computacional es una herramienta actual para resolver problemas de la química donde la experi-mentación es difícil y con un alto costo económico. Se espera en un futuro que esta área desarrolle nuevos métodos y códigos computacionales que permitan estudiar sistemas moleculares de gran tamaño importantes en otras áreas de las ciencias como la física, la biología, ciencias de los materiales, entre otros.
Introductión: Computational thermochemistry is an area of great interest for its various applications in many different fields of chemistry. With the increase of the computational power readily available, it is currently possible to use various calcula-tion based on the electronic structure methods for estimate thermodynamic prop-erties with an error on the order of ~1.0 kcal/mol, which is comparable to experi-mental values. Methodology: In this work we briefly describe the main composite methods such as Petersson series, the Weizmann methods the HEAT model and with special focus on the Gaussian-n theories. Applications: Various applications of computational thermochemistry are presented in this work such as the study of reactivity and stabilities of new derivatives of chemical compounds with potential use as drugs, studies of pollutants in atmospheric chemistry where important values of enthalpies are estimated of training on compounds derived from the greenhouse gas SF6, studies of compounds derived from petroleum of potential importance as new fuels and the development of explosives with energ y estimates of the enthalpies of bond dissociation and combustion of new organic compounds. Conclusions:Computational thermochemistry is a current tool to solve chemistry problems where experimentation is difficult and with a high economic cost. It is expected in the future that this area will develop new methods and computational codes that allow studying large molecular systems important in other areas of science such as physics, biolog y, materials science, among others.
Introdução: a termoquímica computacional é uma área de grande interesse devido às suas diversas aplicações em diferentes campos da química. Hoje em dia, com o avanço no desenvolvimento de supercomputadores, várias metodologias podem ser utilizadas que utilizam cálculos de estrutura eletrônica para estimar valores termodi-nâmicos com erros de ~ 1,0 kcal/mol em comparação com os dados experimentais. Metodologia: este artigo descreve resumidamente os principais métodos compostos usados em termoquímica computacional, como a série Petersson, os métodos de Weizmann, o modelo HEAT e com especial ênfase nas teorias Gaussianas-n. Apli-cações: várias aplicações da termoquímica computacional são apresentadas neste trabalho tais como o estudo da reatividade e estabilidades de novos derivados de compostos químicos com potencial como drogas, estudos de poluentes em química atmosférica onde valores importantes de entalpias são estimados de treinamento em compostos derivados do gás de efeito estufa SF6, estudos de compostos derivados do petróleo com potencial importância como novos combustíveis e o desenvolvimento de explosivos com estimativas energéticas das entalpias de dissociação de ligações e combustão de novos compostos orgânicos. Conclusões: a termoquímica compu-tacional é uma ferramenta atual para resolver problemas de química onde a expe-rimentação é difícil e com alto custo econômico. Espera-se que no futuro esta área desenvolva novos métodos e códigos computacionais que permitam estudar grandes sistemas moleculares importantes em outras áreas da ciência como física, biologia, ciência dos materiais, entre outras.
Referencias
G. Cuevas, F. Cortés, Introducción a la química computacional, Fondo de Cultura Económica, México, 2003.
S. Grimme, P.R. Schreiner, Computational chemistry: The fate of current meth-ods and future challenges, Angewandte Chemie, International Edition, 57(16), 4170-4176 (2018). DOI: https://doi.org/10.1002/anie.201709943. DOI: https://doi.org/10.1002/anie.201709943
C.J. Rhodes, R.M. Macrae, “Vibrational bonding”: A new type of chemical bond is discovered, Science Progress, 98(1), 12-33 (2015). DOI: https://doi.org/10.3184/003685015X14232279560803. DOI: https://doi.org/10.3184/003685015X14232279560803
C.N. Cavasotto, M.G. Aucar, N.S Adler, Computational chemistry in drug lead discovery and design, International Journal of Quantum Chemistry, 119(2), e25678 (2019). DOI: https://doi.org/10.1002/qua.25678. DOI: https://doi.org/10.1002/qua.25678
O. Engkvist, P.-O. Norrby, N. Selmi, Y. Lam, Z. Peng, E.C. Sherer, W. Amberg, T. Erhard, L.A. Smyth, Computational prediction of chemical reactions: cur-rent status and outlook, Drug Discovery Today, 23(6), 1203–1218 (2018). DOI: https://doi.org/10.1016/j.drudis.2018.02.014. DOI: https://doi.org/10.1016/j.drudis.2018.02.014
R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Big data meets quantum chemistry approximations: the Δ-machine learning approach, Journal of Chemical Theory and Computation, 11(5), 2087-2096 (2015). DOI: https://doi.org/10.1021/acs.jctc.5b00099. DOI: https://doi.org/10.1021/acs.jctc.5b00099
D.M. Philipp, M.A. Watson, H.S. Yu, T.B. Steinbrecher, A.D. Bochevarov, Quantum chemical prediction for complex organic molecules, International Journal of Quantum Chemistry, 118(12), e25561 (2018). DOI: https://doi.org/10.1002/qua.25561. DOI: https://doi.org/10.1002/qua.25561
A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, QSAR modeling : Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977-5010 (2014). DOI: https://doi.org/10.1021/jm4004285. DOI: https://doi.org/10.1021/jm4004285
M. Biczysko, J. Bloino, C. Puzzarini, Computational challenges in astrochemis-tr y, WIREs Computational Molecular Science, 8(3), e1349 (2018). DOI: https://doi.org/10.1002/wcms.1349. DOI: https://doi.org/10.1002/wcms.1349
R.A. Friesner, Ab initio quantum chemistry: Methodolog y and applications, Proceedings of the National Academy of Sciences, 102(19), 6648-6653 (2005). DOI: 10.1073/pnas.0408036102. DOI: https://doi.org/10.1073/pnas.0408036102
G.M.J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J.E. Deustua, D.G. Fedorov, J.R. Gour, A.O. Gunina, E. Guidez, et al., Recent developments in the general atomic and molecular electronic structure system, The Journal of Chemi-cal Physics, 152(15), 154102 (2020). DOI: https://doi.org/10.1063/5.0005188. DOI: https://doi.org/10.1063/5.0005188
S. Śmiga, A. Buksztel, I. Grabowski, Density-Dependent Exchange-Correlation potentials derived from highly accurate Ab initio calculations, Advances in Quan-tum Chemistry, 68, 125-151 (2014). DOI: https://doi.org/10.1016/B978-0-12-800536-1.00007-1. DOI: https://doi.org/10.1016/B978-0-12-800536-1.00007-1
J. Demaison, Experimental, semi-experimental and ab initio equilibrium structures, Molecular Physics, 23-24, 3109-3138 (2007). DOI: https://doi.org/10.1080/00268970701765811. DOI: https://doi.org/10.1080/00268970701765811
T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, John Wiley & Sons., New York, 2014. DOI: 10.1002/9781119019572. DOI: https://doi.org/10.1002/9781119019572
K.K. Irikura, D.J. Frurip, Computational Thermochemistry, American Chemical Society, 1998. DOI:10.1021/bk-1998-0677.ch001. DOI: https://doi.org/10.1021/bk-1998-0677
Z. Gan, Y. Alexeev, M.S. Gordon, R.A. Kendall, The parallel implementation of a full configuration interaction program, The Journal of Chemical Physics, 119(1), 47-59 (2003). DOI: https://doi.org/10.1063/1.1575193. DOI: https://doi.org/10.1063/1.1575193
I.N. Levine, Quantum Chemistry, Pearson Prentice Hall, Upper Saddle River (NJ), 2009.
E.G. Lewars, Computational Chemistry: Introduction to the Theory and Applica-tions of Molecular and Quantum Mechanics, Springer US, 2007.
L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gn theory, WIREs Computa-tional Molecular Science, 1(5), 810-825 (2011). DOI: https://doi.org/10.1002/wcms.59. DOI: https://doi.org/10.1002/wcms.59
J.M.L. Martin, G. de Oliveira, Towards standard methods for benchmark quality ab initio thermochemistry W1 and W2 theory, The Journal of Chemical Physics, 111(5), 1843–1856 (1999). DOI: https://doi.org/10.1063/1.479454. DOI: https://doi.org/10.1063/1.479454
A. Tajti, P.G. Szalay, A.G. Császár, M. Kállay, J. Gauss, E.F. Valeev, B.A. Flow-ers, J. Vázquez, J.F. Stanton, HEAT: High accuracy extrapolated ab initio ther-mochemistry, The Journal of Chemical Physics, 121(23), 11599-11613 (2004). DOI: https://doi.org/10.1063/1.1811608. DOI: https://doi.org/10.1063/1.1811608
K.A. Peterson, D. Feller, D.A. Dixon, Chemical accuracy in ab initio thermo-chemistry and spectroscopy: Current strategies and future challenges, Theoretical Chemistry Accounts, 131(1), 1079 (2012). DOI: 10.1007/s00214-011-1079-5. DOI: https://doi.org/10.1007/s00214-011-1079-5
M.D. Allendorf, C.F. Melius, B. Cosic, A. Fontijn, BAC-G2 predictions of ther-mochemistry for gas-phase aluminum compounds, The Journal of Physical Chem-istry A, 106(11), 2629-2640 (2002). DOI: https://doi.org/10.1021/jp013128r. DOI: https://doi.org/10.1021/jp013128r
B. Anantharaman, C.F. Melius, Bond additivity corrections for G3B3 and G3MP2B3 quantum chemistry methods, The Journal of Physical Chemistry A, 109(8), 1734-1747 (2005). DOI: https://doi.org/10.1021/jp0458831. DOI: https://doi.org/10.1021/jp045883l
N. Cohen, S.W. Benson, Estimation of heats of formation of organic com-pounds by additivity method, Chemical Reviews, 93(7), 2419-2438 (1993). DOI: https://doi.org/10.1021/cr00023a005. DOI: https://doi.org/10.1021/cr00023a005
L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory, The Journal of Chemical Physics, 126(8), 84108 (2007). DOI: https://doi.org/10.1063/1.2436888. DOI: https://doi.org/10.1063/1.2436888
L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory using reduced order perturbation theory, The Journal of Chemical Physics, 127(12), 124-105 (2007). DOI: https://doi.org/10.1063/1.2770701. DOI: https://doi.org/10.1063/1.2770701
C.I. Buendía-Atencio, Estudios termoquímicos, espectroscópicos y cinéticos teóricos de reacciones de especies de interés ambiental, Tesis doctoral, Universidad Nacional de La Plata, Argentina, 2012.
T.H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, 90(2), 1007-1023 (1989). DOI: https://doi.org/10.1063/1.456153. DOI: https://doi.org/10.1063/1.456153
M.M. Meshhal, S.H. El-Demerdash, A.M. El-Nahas, A thermochemical com-putational study on hydroxyquinolines and their azulene analogues, Journal of Molecular Structure, 1183, 70-77 (2019). DOI: https://doi.org/10.1016/j.mol-struc.2019.01.047. DOI: https://doi.org/10.1016/j.molstruc.2019.01.047
J.J. Lozano, R. Pouplana, M. López, J. Ruiz, Conformational analysis of the anti-inflammatory fenamates: A molecular mechanics and semiempirical molecular orbital study, Journal of Molecular Structure: THEOCHEM, 335(1-3), 215-227 (1995). DOI: https://doi.org/10.1016/0166-1280(94)04003-B. DOI: https://doi.org/10.1016/0166-1280(94)04003-B
A.O. Surov, G.L. Perlovich, V.N. Emel’yanenko, S.P. Verevkin, Thermochem-istry of drugs. Experimental and first-principles study of fenamates, Journal of Chemical & Engineering Data, 56(12), 4325-4332 (2011). DOI: https://doi.org/10.1021/je200128y DOI: https://doi.org/10.1021/je200128y
C. Sahu, S. Pakhira, K. Sen, A.K. Das, A computational study of detoxification of Lewisite warfare agents by British Anti-Lewisite: Catalytic effects of water and ammonia on reaction mechanism and Kinetics, The Journal of Physical Chemistry A, 117(16), 3496-3506 (2013). DOI: https://doi.org/10.1021/jp312254z DOI: https://doi.org/10.1021/jp312254z
G.E. Likens, F.H. Bormann, N.M. Johnson, Acid rain, Environment: Science and Policy for Sustainable Development, 14(2), 33-40 (1972). DOI: https://doi.org/10.1080/00139157.1972.9933001. DOI: https://doi.org/10.1080/00139157.1972.9933001
J.F.B. Mitchell, The “Greenhouse” effect and climate change, Reviews of Geophys-ics, 27(1), 115-139 (1989). DOI: https://doi.org/10.1029/RG027i001p00115. DOI: https://doi.org/10.1029/RG027i001p00115
J. Calvert, A. Mellouki, J. Orlando, The mechanisms of atmospheric oxidation of the oxygenates, Oxford University Press, New York, 2011. DOI: https://doi.org/10.1093/oso/9780199767076.001.0001
P.A. Smithson, IPCC, 2001: climate change 2001: the scientific basis. Contribu-tion of Working Group 1 to the Third Assessment Report of the Intergovernmen-tal Panel on Climate Change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Da (Book review), International Journal of Climatolog y, 22(9), 1144 (2002). DOI: https://doi.org/10.1002/joc.763. DOI: https://doi.org/10.1002/joc.763
W.T. Sturges, T.J. Wallington, M.D. Hurley, K.P. Shine, K. Sihra, A. Engel, D.E. Oram, S.A. Penkett, R. Mulvaney, C.A.M. Brenninkmeijer, A potent green-house gas identified in the atmosphere: SF5CF3, Science, 289(5479), 611-613 (2000). DOI: https://doi.org/10.1126/science.289.5479.611. DOI: https://doi.org/10.1126/science.289.5479.611
M. Suen, Trifluoromethyl sulfur pentafluoride (CF3SF5): A review of the recently discovered super-greenhouse gas in the atmosphere, The Open Atmos-pheric Science Journal, 2(1), 56-60 (2008). DOI: https://doi.org/10.2174/1874282300802010056. DOI: https://doi.org/10.2174/1874282300802010056
C. Buendía-Atencio, C.J. Cobos, Theoretical study of the thermochemistry and the kinetics of the SFxCl (x = 0-5) series, Journal of Fluorine Chemistry, 132(7), 474-481 (2011). DOI: https://doi.org/10.1016/j.jfluchem.2011.04.020. DOI: https://doi.org/10.1016/j.jfluchem.2011.04.020
C.I. Merrill, G.H. Cady, Bis-(pentafluorosulfur) peroxide, Journal of the Ameri-can Chemical Society, 83(2), 298-300 (1961). DOI: https://doi.org/10.1021/ja01463a011. DOI: https://doi.org/10.1021/ja01463a011
J. Czarnowski, H.J. Schumacher, Data on the formation and decompo-sition of bis(pentafluorosulfur) trioxide, bis(pentafluorosulfur) dioxide, bis(pentafluorosulfur) monoxide and of the radicals SF5O2 and SF5O. A review of earlier kinetic investigations, Journal of Fluorine Chemistry, 12(6), 497-503 (1978). DOI: https://doi.org/https://doi.org/10.1016/S0022-1139(00)81092-1. DOI: https://doi.org/10.1016/S0022-1139(00)81092-1
J. Czarnowski, H.J. Schumacher, Kinetics of the thermal decomposition of bis-pentafluorine sulfur peroxide in the presence of carbon monoxide, Internatio-nal Journal of Chemical Kinetics, 10(1), 111-116 (1978). DOI: https://doi.org/10.1002/kin.550100109. DOI: https://doi.org/10.1002/kin.550100109
M. Kronberg, S. von Ahsen, H. Willner, J.S. Francisco, The SF5Ox radicals, x=0–3. Angewandte Chemie, International Edition, 440(2), 253-257 (2005). DOI: https://doi.org/10.1002/anie.200461235. DOI: https://doi.org/10.1002/anie.200461235
W. Xu, S. Cheng, S. Lu, Structures, vibrational frequencies, and electron affinities of SF5On/SF5On− (n=1–3), Journal of Molecular Structure: THEOCHEM, 900(1), 77-83 (2009). DOI: https://doi.org/https://doi.org/10.1016/j.theo-chem.2008.12.027. DOI: https://doi.org/10.1016/j.theochem.2008.12.027
J.A. Martínez Bernal, G. Pieffet, V.P. Lorett Velásquez, C. Buendía-Atencio, High level ab initio thermochemistry of SF5OOO radical, Computational and Theoretical Chemistry, 1148, 8-15 (2019). DOI: https://doi.org/10.1016/j.comptc.2018.12.008. DOI: https://doi.org/10.1016/j.comptc.2018.12.008
A.M. El-Nahas, J.W. Bozzelli, J.M. Simmie, M. V. Navarro, G. Black, H.J. Curran, Thermochemistry of acetonyl and related radicals, The Journal of Physical Che-mistry A, 110(50), 13618-13623 (2006). DOI: https://doi.org/10.1021/jp065003y. DOI: https://doi.org/10.1021/jp065003y
G. Bouchoux, J. Chamot-Rooke, D. Leblanc, P. Mourgues, M. Sablier, Proton affi-nity and heat of formation of vinyloxy [CH2CHO] and acetonyl [CH2COCH3] radicals, ChemPhysChem, 2(4), 235-241 (2001). DOI:https://doi.org/10.1002/1439-7641(20010417)2:4<235::AID-CPHC235>3.0.CO;2-S. DOI: https://doi.org/10.1002/1439-7641(20010417)2:4<235::AID-CPHC235>3.0.CO;2-S
V.B. Oyeyemi, D.B. Krisiloff, J.A. Keith, F. Libisch, M. Pavone, E.A. Carter, Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons, The Journal of Chemical Physics, 140(4), 44317 (2014). DOI: https://doi.org/10.1063/1.4862159. DOI: https://doi.org/10.1063/1.4862159
V. Oyeyemi, Ab Initio thermochemistry of biofules, Doctoral dissertation, Prince-ton University, Princeton (NJ), 2016.
G.M. Khrapkovskii, D.D. Sharipov, A.G. Shamov, D.L. Egorov, D.V. Chachkov, R.V. Tsyshevsky, Enthalpies of formation of mono substituted nitrobenzenes: A quantum chemistry study, Computational and Theoretical Chemistry, 1011, 37-43 (2013). DOI: https://doi.org/10.1016/j.comptc.2013.02.005. DOI: https://doi.org/10.1016/j.comptc.2013.02.005
T. Yu, B. Wu, A theoretical prediction on CN6O: Structure, stability and perfor-mance, Inorganic Chemistry Frontiers, 2(11), 991-1000 (2015). DOI: https://doi.org/10.1039/c5qi00120j. DOI: https://doi.org/10.1039/C5QI00120J
L.-C. Li, J. Shang, J.-L. Liu, X. Wang, N.-B. Wong, A G3B3 study of N4H4 iso-mers, Journal of Molecular Structure: THEOCHEM, 807(1-3), 207-210 (2007). DOI: https://doi.org/10.1016/j.theochem.2006.12.009. DOI: https://doi.org/10.1016/j.theochem.2006.12.009
S. Rayne, K. Forest, A G4MP2 and G4 theoretical study into the thermoche-mical properties of explosophore substituted tetrahedranes and cubanes, Pro-pellants, Explosives, Pyrotechnics, 36(5), 410-415 (2011). DOI: https://doi.org/10.1002/prep.201000165. DOI: https://doi.org/10.1002/prep.201000165
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13