Publicado
The theoretical description for omeprazole electrochemical determination, assisted by the composite poly(1,2,4-triazole)-Ag2O2
Descripción teórica de la detección electroquímica de omeprazol, asistida por el compuesto poli(1,2,4-triazol)-Ag2O2
A descrição teórica da detecção eletroquímica de omeprazol, assistida pelo compósito poli(1,2,4-triazol)-Ag2O2
DOI:
https://doi.org/10.15446/rcciquifa.v51n3.107385Palabras clave:
Omeprazole, electrochemical sensors, silver (I, III) oxide, conducting polymers, stable steady-state (en)Omeprazol, sensores electroquímicos, óxido de plata (I, III), polímeros conductores, estado estacionario estable (es)
Omeprazol, sensores eletroquímicos, óxido de prata (I, III), polímeros condutores, estado estacionário estável (pt)
Descargas
Introduction: Omeprazole is one of the most used proton-blocking molecules applied in the gastric ulcer treatment. Its blocking effect is achieved by the presence of both acidic and basic nitrogen heteroatoms in its composition. Nevertheless, due to its collateral effects, which may be moderate to severe, the development of its electrochemical determination is really actual. Methods: In this work, we describe theoretically the possibility of omeprazole electrochemical determination, assisted by the composite, containing the silver (I, III) oxide as an active substance and the polymer of 1,2,4-triazolic derivative as a mediator. In this case, the omeprazole molecule is gradually oxidized yielding firstly phenolic and then quinonic derivative. The pyridinic nitrogen is oxidized later. Results: The electroanalytical process is described by a trivariant equation-set, analysis of which confirms the efficiency of the composite of poly(1,2,4-triazole) with Ag2O2. The electrochemical oscillations are also possible, being realized beyond the detection limit. Conclusion: The composite of poly(1,2,4-triazole) with Ag2O is suitable for omeprazole electrochemical determination both in vivo and in vitro.
Introdução: o omeprazol é um dos bloqueadores de protons mais usados no tratamento de úlceras gástricas. O seu efeito de bloqueio se dá pela presença dos heteroátomos de nitrogênio de carizes acídico e básico. Entretanto, vistos os seus efeitos colaterais, que podem ser moderados a severos, o desenvolvimento de um método da sua determinação eletroquímica é realmente atual. Métodos: neste trabalho, nós descrevemos teoricamente a possibilidade da determinação electroquímica de omeprazol, assistida pelo compósito, que contém o óxido de prata (I, III) como substância ativa e o polímero 1,2,4-triazólico como mediador. Neste caso, a molécula do omeprazol se oxida gradualmente, rendendo primeiro o seu derivado fenólico, depois, o quinônico. O nitrogénio piridínico se oxida depois. Resultados: o processo eletroanalítico se descreve por um conjunto de equações diferenciais trivariante, cuja análise confirma a eficácia do compósito de poli(1,2,4-triazol) com Ag2O2. As oscilações eletroquímicas também são possíveis, realizando-se além do limite de detecção. Conclusão: o compósito de poli(1,2,4-triazol) com Ag2O é idóneo para a detecção eletroanalítica de omeprazol tanto in vivo como in vitro.
Referencias
C.P. Dooley, H. Cohen, P.L. Fitzgibbons, M. Bauer, M.D. Appleman, G.I. Pérez-Pérez, M.J. Blazer, Prevalence of Helicobacter Pylori infection and histologic gastritis in asymptomatic persons, N. Eng. J. Med., 321, 1562-1566 (1989). 2. M. Stoppler, What causes ulcers? MedicineNet, 2009, URL: http://www.medicinenet. com/script/main/art.asp?articlekey=43451, accessed at the 19th of July 2020.
J. Robinson, What is gastritis? URL: https://www.webmd.com/digestive-disorders/ digestive-diseases-gastritis, accessed at the 19th of July 2020
Omeprazole, DrugBank On line, URL: http://www.drugbank.ca/drugs/ DB00338#pharmacology, accessed at the 19th of July 2020
B. Wallmark, Mechanism of action of omeprazole, Scand. J. Gastroenterol. Suppl., 118, 11-17 (1986).
P. Lindberg, P. Nordberg, T. Alminger, et al., The mechanism of action of the antisecretory agent omeprazole, J. Med. Chem., 29, 1327-1329 (1986).
I. Puscas, M. Coltau, M. Baican, G. Domuta, Omeprazole has a dual mechanism of action: it inhibits both H+K+-ATPase and gastric mucosa carbonic anhydrase enzyme in humans (in vitro and in vivo experiments), J. Pharmacol. Exp. Theor., 290, 530-534 (1999).
Omeprazole, URL: https://www.drugs.com/sfx/omeprazole-side-effects.html, accessed at the 19th of July 2020.
K.R. Mahantesha, B.E. Kumara Swamy, K. Vasantakumar Pai, Poly (alizarin) Modified glassy carbon electrode for the electrochemical investigation of omeprazole: A voltammetric study, Anal. Bioanal. Electrochem., 6, 234-240 (2014).
L. Sasso, A. Heiskanen, F. Diazzi, et al., Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations, Analyst, 138, 3651-3659 (2013).
T. Qian, Ch. Yu, X. Zhou, et al., Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes, Biosens. Bioelectron., 58, 237-241 (2014).
M. Lin, A dopamine electrochemical sensor based on gold nanoparticles/overoxidized polypyrrole nanotube composite arrays, RSC Adv., 5, 9848-9851 (2015).
J.S. Stefano, T.F. Formin, J.P. da Silva et al., Amperometric determination of omeprazole on screen-printed electrodes using batch injection analysis, Microchem. J., 133, 398-403 (2017).
S. Sharokhian, M. Ghalhjani, M. Bayat, F. Ghorbani, Voltammetric behavior and determination of trace amounts of omeprazole using an edge-plane pyrolytic graphite electrode, Iran. J. Pharm. Res., 13, 465-471 (2015).
Y. Nikodimos, M. Amare, Electrochemical determination of metronidazole in tablet samples using carbon paste electrode, J. Anal. Meth. Chem., 2016, ID 3612943 (2016).
R.W. Oliveira, P. Gomes, J. Ribeiro, et al., Determinação espectrofotométrica de Cobre (II) em aguardente de mandioca (Tiquira), Rev. Colomb. Cienc. Quím. Farm., 49, 353-371 (2020).
A. Bagheri, M. Hassani-Marand, Voltammetric and potentiometric determination of Cu2+, using an overoxidized polypyrrole based electrochemical sensor, Russ. J. Electrochem., 56, 453-461 (2020).
S. Tajik, Z. Dourandish, P.M. Jahani, et al., Recent developments in voltammetric and amperometric sensors for cysteine detection, RSC Adv., 11, 5411-5425 (2021).
V.M. de Andrade, Confecção de biossensores através da imobilização de biocomponentes por eletropolimerização de pirrol, M. Sc. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2006, 112 p.
Y. Jung, N. Singh, K.-S. Choi, Cathodic deposition of polypyrrole enabling the one-step assembly of metal–polymer hybrid electrodes, Angew. Chem., Int. Ed., 48, 8331-8334 (2009).
F. Ağın, Electrochemical determination of amoxicillin on a poly(acridine orange) modified glassy carbon electrode, Anal. Lett., 49, 1366-1378 (2016).
S. Friães, A. Silva, R. Boto et al., Synthesis, spectroscopic characterization and biological evaluation of unsymmetrical aminosquarylium cyanine dyes, Bioorg. Med. Chem., 25, 3803-3814 (2017).
I. Das, N. Goel, S.K. Gupta, N.R. Agrawal, Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants, J. Electroanal. Chem., 670, 1-10 (2012).
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono-and mixed surfactants, J. Phys. Chem. B, 114, 12888-12896 (2010).
V.V. Tkach, M.V. Kushnir, Ya.G. Ivanushko et al., The theoretical description for neotame electrochemical determination, assisted by vanadium oxyhydroxide composite with a squarainic dye, Appl. J. Env. Eng. Sci., 6, 109-115 (2020).
V.V. Tkach, M.V. Kushnir, N.M. Storoshchuk et al., The theoretical description for the confection of the novel thiourea-based active surface for cathodic conducting polymer deposition, Appl. J. Env. Eng. Sci., 6, 143-148 (2020).
V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, et al., Theoretical evaluation for the function of economical and green conducting composite material-based chip for Jamaican vomiting sickness diagnostics, Biointerface Res. Appl. Chem., 11, 10317-10324 (2021).
V.V. Tkach, M.V. Kushnir, Y.G. Ivanushko, et al., The theoretical description for the electrochemical synthesis of squaraine dye doped conducting polymer, Appl. J. Env. Eng. Sci., 6, 51-56 (2020).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13