Publicado

2024-01-22

Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes

Terapia ósea a través de la administración de fármacos tipo quelatos [iones bisfosfonato-metal] adsorbidos en la superficie de nanotubos de carbono

Terapia óssea por meio de administração do quelatos [íons bifosfonato-metal] adsorvidos na superfície de nanotubos de carbono

DOI:

https://doi.org/10.15446/rcciquifa.v52n2.110734

Palabras clave:

(5,5) armchair SWCNT, protein-bisphosphonate, metal chelating (en)
(5.5) sillón SWCNT, proteína-bifosfonato, quelación de metales (es)
(5,5) poltrona SWCNT, proteína-bifosfonato, quelantes de metais (pt)

Autores/as

  • Fatemeh Mollaamin Kastamonu University
  • Majid Monajjemi Islamic Azad University

Aim: To investigate asingle-walled carbon nanotube (SWCNT) joint to bisphosphonate agents of 5AEL, 5AFX, 4QPF, 3DYG, 2F92, 2I19 chelated to metal cations of Mg2+, Ca2+, Sr2+ due to the direct electron transfer principle which has been studied by density functional theory methods. Method: It has been accomplished the B3LYP/6-311+G(d,p)/LANL2DZ to estimate the susceptibility of SWCNT for adsorbing 5AEL, 5AFX, 4QPF, 3DYG, 2F92, 2I19 chelated to metal cations of Mg2+, Ca2+, Sr2+ through nuclear magnetic resonance and thermodynamic parameters. Results: The data explained that the feasibility of using SWCNT and bisphosphonate agents becomes the norm in metal chelating of delivery system, which has been selected through several bisphosphonate agents of 5AEL, 5AFX, 4QPF, 3DYG, 2F92, and 2I19 using DFT method due to physico-chemical properties of NMR and IR methodologies.

Objetivo: investigar la unión de nanotubos de carbono de pared simple (SWCNT) con agentes bisfosfonatos de 5AEL, 5AFX, 4QPF, 3DYG, 2F92, 2I19 quelados con cationes metálicos de Mg2+, Ca2+, Sr2+ debido al principio de transferencia directa de electrones que tiene ha sido estudiado por métodos de la teoría funcional de la densidad. Método: se ha realizado el B3LYP/6-311+G(d,p)/LANL2DZ para estimar la susceptibilidad de SWCNT para adsorber 5AEL, 5AFX, 4QPF, 3DYG, 2F92, 2I19 quelados a cationes metálicos de Mg2+, Ca2+, Sr2+ mediante resonancia magnética nuclear y parámetros termodinámicos. Resultados: los datos explicaron que la viabilidad de usar SWCNT y agentes bisfosfonatos se convierte en la norma en el sistema de entrega de quelación de metales, que ha sido seleccionado a través de varios agentes bisfosfonatos de 5AEL, 5AFX, 4QPF, 3DYG, 2F92 y 2I19 usando el método DFT debido a propiedades fisicoquímicas de los métodos de RMN e IR.

Objetivo: investigar os nanotubos de carbono de parede simples (SWCNT) unidos a agentes bifosfonatos de 5AEL, 5AFX, 4QPF, 3DYG, 2F92, 2I19 quelatados a cátions metálicos de Mg2+, Ca2+, Sr2+ devido ao princípio de transferência direta de elétrons que tem tem sido estudado por métodos da teoria do funcional da densidade. Metodo: foi realizado o B3LYP/6-311+G(d,p)/LANL2DZ para estimar a suscetibilidade do SWCNT para adsorver 5AEL, 5AFX, 4QPF, 3DYG, 2F92, 2I19 quelatados a cátions metálicos de Mg2+, Ca2+, Sr2+ por ressonância magnética nuclear e parâmetros termodinâmicos. Resultados: os dados explicaram que a viabilidade do uso de agentes SWCNT e bisfosfonatos se torna a norma no sistema de entrega de quelante de metal, que foi selecionado por meio de vários agentes bisfosfonatos de 5AEL, 5AFX, 4QPF, 3DYG, 2F92 e 2I19 usando o método DFT devido a propriedades físico-químicas de metodologias de RMN e IV.

Referencias

M. Kistler-Fischbacher, B.K. Weeks, B.R. Beck, The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis, Bone, 143, 115697 (2021). Doi: https://doi.org/10.1016/j.bone.2020.115697

K.E. Åkesson, F.E.A. McGuigan, Closing the osteoporosis care gap, Curr. Osteoporos. Rep., 19, 58-65 (2021). Doi: https://doi.org/10.1007/s11914-020- 00644-w

G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, S.K. Bannerjee, Drug delivery systems: An updated review, Int. J. Pharm. Investig., 2(1), 2–11 (2012). Doi: https://doi.org/10.4103/2230-973X.96920

J. Li, M. Zeng, H. Shan, C. Tong, Microneedle patches as drug and vaccine delivery platform, Curr. Med. Chem., 24(22), 2413–2422 (2017). Doi: https://doi. org/10.2174/0929867324666170526124053

R.K. Tekade (editor), Basic fundamentals of drug delivery, Academic Press, 2018.

T.M. Allen, Drug delivery systems: Entering the mainstream, Science, 303(5665), 1818–1822 (2004). Doi: https://doi.org/10.1126/science.1095833

A.P. Singh, A. Biswas, A. Shukla, P. Maiti, Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles, Sig. Transduct. Target. Ther., 4(1), 33 (2019). Doi: https://doi.org/10.1038/s41392-019-0068-3

S.M.N. Mohsin, M.Z. Hussein, S.H. Sarijo, S. Fakurazi, P. Arulselvan, Y.H. Taufiq-Yap, Characterisation and cytotoxicity assessment of UV absorbersintercalated zinc/aluminium-layered double hydroxides on dermal fibroblast cells, Science of Advanced Materials, 6(4), 648–658 (2014). Doi: https://doi.org/10.1166/sam.2014.1752

B. Saifullah, M.Z. Hussein, S.H. Hussein-Al-Ali, P. Arulselvan, S. Fakurazi, Antituberculosis nanodelivery system with controlled-release properties based on paraamino salicylate-zinc aluminum-layered double-hydroxide nanocomposites, Drug Des. Devel. Ther., 7, 1365–1375 (2013). Doi: https://doi.org/10.2147/DDDT.S50665

F. Barahuie, M.Z. Hussein, S.H. Hussein-Al-Ali, P. Arulselvan, S. Fakurazi, Z. Zainal, Preparation and controlled-release studies of a protocatechuic acid-magnesium/ aluminumlayered double hydroxide nanocomposite, Int. J. Nanomedicine, 8, 1975–1987 (2013). Doi: https://doi.org/10.2147/IJN.S42718

A.U. Kura, S.H.H.A. Ali, M.Z. Hussein, S. Fakurazi, P. Arulselvan, Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent, Int. J. Nanomedicine, 8, 1103–1110 (2013). Doi: https://doi.org/10.2147/IJN.S39740

S.M.N. Mohsin, M.Z. Hussein, S.H. Sarijo, S. Fakurazi, P. Arulselvan, T.Y. Hin, Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application, Chem. Cent. J., 7(1), 26 (2013). Doi: https://doi.org/10.1186/1752-153X-7-26

S.M.N. Mohsin, M.Z. Hussein, S.H. Sarijo, S. Fakurazi, P. Arulselvan, Y.H. Taufiq-Yap, Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules, J. Biomed. Nanotechnol., 10(8), 1490–1500 (2014). Doi: https://doi.org/10.1166/jbn.2014.1854

X. Cao, W. Deng, M. Fu, et al., Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: in vitro release kinetics and in vitro/in vivo correlations in beagle dogs, Eur. J. Pharm. Sci., 48(1- 2), 64–71 (2013). Doi: https://doi.org/10.1016/j.ejps.2012.10.012

R. Ghaffarian, T. Bhowmick, S. Muro, Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM- 1, J. Control. Release, 163(1), 25–33 (2012). Doi: https://doi.org/10.1016/j.jconrel.2012.06.007

L. Zhang, H. Xue, Z. Cao, A. Keefe, J. Wang, S. Jiang, Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance, Biomaterials, 32(20), 4604–4608 (2011). Doi: https://doi.org/10.1016/j.biomaterials.2011.02.064

D.S. Bethune, C.H. Kiang, M.S. de Vries, et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363(6430), 605–607 (1993). Doi: https://doi.org/10.1038/363605a0

S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363(6430), 603–605 (1993). Doi: https://doi.org/10.1038/363603a

H. Dai, Carbon nanotubes: opportunities and challenges, Surface Science, 500(1– 3), 218–241 (2002). Doi: https://doi.org/10.1016/S0039-6028(01)01558-8

T.G. Abi, T. Karmakar, S. Taraphder, Proton affinity of polar amino acid sidechain analogues anchored to the outer wall of single walled carbon nanotubes, Comput. Theor. Chem., 1010, 53–66 (2013). Doi: https://doi.org/10.1016/j. comptc.2013.02.001

W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotechnol. Adv., 29(6), 889–895 (2011). Doi: https://doi.org/10.1016/j.biotechadv.2011.07.007

Q. Chen, T. Kaneko, R. Hatakeyama, Characterization of pulse-driven gas-liquid interfacial discharge plasmas and application to synthesis of gold nanoparticle- DNA encapsulated carbon nanotubes, Curr. Appl. Phys., 11(5), S63–S66 (2011). Doi: https://doi.org/10.1016/j.cap.2011.05.022

Z. Mbese, B.A. Aderibigbe, Bisphosphonate-based conjugates and derivatives as potential therapeutic agents in osteoporosis, bone cancer and metastatic bone cancer, Int. J. Mol. Sci., 22, 6869 (2021). Doi: https://doi.org/10.3390/ijms22136869

M. Rauner, H. Taipaleenmäki, E. Tsourdi, E.M. Winter, Osteoporosis treatment with anti-sclerostin antibodies-mechanisms of action and clinical application, J. Clin. Med., 10, 787 (2021). Doi: https://doi.org/10.3390/jcm10040787

I. Geiger, C. Kammerlander, C. Höfer, R. Volland, J. Trinemeier, M. Henschelchen, T. Friess, FLS-CARE study group, W. Böcker, L. Sundmacher, Implementation of an integrated care programme to avoid fragility fractures of the hip in older adults in 18 Bavarian hospitals—study protocol for the cluster-randomised controlled fracture liaison service FLS-CARE, BMC Geriatr., 21, 43 (2021). Doi: https://doi.org/10.1186/s12877-020-01966-1

K.N. Hayes, N. He, K.A. Brown, A.M. Cheung, D.N. Juurlink, S.M. Cadarette, Over half of seniors who start oral bisphosphonate therapy are exposed for 3 or more years: Novel rolling window approach and patterns of use, Osteoporos. Int., 32, 1413-1420 (2021). Doi: https://doi.org/10.1007/s00198-020-05794-2

A.S. Sølling, D.H. Christensen, B. Darvalics, T. Harsløf, R.W. Thomsen, B. Langdahl, Fracture rates in patients discontinuing alendronate treatment in real Life: A population-based cohort study, Osteoporos. Int., 32, 1103–1115 (2021). Doi: https://doi.org/10.1007/s00198-020-05745-x.

J.-W. Kim, J. Yee, S.-H. Oh, S.-H. Kim, S.-J. Kim, J.-E. Chung, H.-S. Gwak, Machine learning approaches for predicting bisphosphonate-related osteonecrosis in women with osteoporosis using VEGFA gene polymorphisms, Journal of Personalized Medicine, 11, 541 (2021). Doi: https://doi.org/10.3390/jpm11060541

B.L. Langdahl, Overview of treatment approaches to osteoporosis, Br. J. Pharmacol., 178, 1891–1906 (2021). Doi: https://doi.org/10.1111/bph.15024

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, et al., Gaussian, Inc., Wallingford CT., 2009.

W. Koch, M.C. Holthausen, A chemist’s guide to density functional theory, 2nd edition, Wiley-VCH, Weinheim, Germany, 2000. pp. 3-64, 93-104.

A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98(7), 5648-5652 (1993). Doi: https://doi.org/10.1063/1.464913

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38(6), 3098-3100 (1988). Doi: https://doi.org/10.1103/PhysRevA.38.3098

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density, Phys. Rev. B, Condens. Matter., 37(2), 785-789 (1988). Doi: https://doi.org/10.1103/physrevb.37.785

P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 98(45), 11623-11627 (1994). Doi: https://doi.org/10.1021/j100096a001

C.J. Cramer, D.G. Truhlar, PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model, J. Comput. Chem., 13, 1089-1097 (1992). Doi: https://doi.org/10.1002/jcc.540130907

D.A. Liotard, G.D. Hawkins, G.C. Lynch, C.J. Cramer, D.G. Truhlar, Improved methods for semiempirical solvation models, J. Comput. Chem., 16, 422-440 (1995). Doi: https://doi.org/10.1002/jcc.540160405

C.C. Chambers, G.D. Hawkins, C.J. Cramer, D.G. Truhlar, Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 100(40), 16385-16398 (1996). Doi: https://doi.org/10.1021/ jp9610776

D.J. Giesen, M.Z. Gu, C.J. Cramer, D.G. Truhlar, A universal organic solvation model, J. Org. Chem., 61(25), 8720-8721 (1996). Doi: https://doi.org/10.1021/ jo9617427

L.J. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc., 58, 1486-1493 (1936). Doi: https://doi.org/10.1021/ja01299a050

J. Tomasi, Cavity and reaction field: “robust” concepts. Perspective on “Electric moments of molecules in liquids”, Theor. Chem. Acc., 103, 196-199 (2000). Doi: https://doi.org/10.1007/s002149900044

J. Park, V.R. Pandya, S.J. Ezekiel, A.M. Berghuis, Phosphonate and bisphosphonate inhibitors of farnesyl pyrophosphate synthases: A structure-guided perspective, Front. Chem., 8, 612728 (2021). Doi: https://doi.org/10.3389/fchem.2020.612728

C. Marocco, G. Zimatore, E. Mocini, R. Fornari, G. Iolascon, M.C. Gallotta, V.M. Bimonte, C. Baldari, A. Lenzi, S. Migliaccio, Efficacy of denosumab therapy following treatment with bisphosphonates in women with osteoporosis: A cohort study, Int. J. Environ. Res. Public Health, 18, 1728 (2021). Doi: https://doi.org/10.3390/ijerph18041728

J. Park, V.R. Pandya, S.J. Ezekiel, A.M. Berghuis, Phosphonate and bisphosphonate inhibitors of farnesyl pyrophosphate synthases: A structure-guided perspective, Front. Chem., 8, 612728 (2021). Doi: https://doi.org/10.3389/fchem.2020.612728

E. Adjei-Sowah, Y. Peng, J. Weeks, J.H. Jonason, K.L. de Mesy-Bentley, E. Masters, et al., Development of bisphosphonate-conjugated antibiotics to overcome pharmacodynamic limitations of local therapy: Initial results with carbamate linked sitafloxacin and tedizolid, Antibiotics, 10, 732 (2021). Doi: https://doi. org/10.3390/antibiotics10060732

S. Tanaka, Y. Tanaka, RANKL as a therapeutic target of rheumatoid arthritis, J. Bone Miner. Metab., 39(1), 106–112 (2021). Doi: https://doi.org/10.1007/s00774-020-01159-1

M. Vassaki, C. Kotoula, P. Turhanen, D. Choquesillo-Lazarte, K.D. Demadis, Calcium and strontium coordination polymers as controlled delivery systems of the anti-osteoporosis drug risedronate and the augmenting effect of solubilizers, Appl. Sci., 11, 11383 (2021). Doi: https://doi.org/10.3390/app112311383

L. Rauch, R. Hein, T. Biedermann, K. Eyerich, F. Lauffer, Bisphosphonates for the treatment of calcinosis Cutis-A retrospective single-center study, Biomedicines, 9, 1698 (2021). Doi: https://doi.org/10.3390/biomedicines9111698

R.A. Fry, K.D. Kwon, S. Komarneni, J.D. Kubicki, K.T. Mueller, Solid-state NMR and computational chemistry study of mononucleotides adsorbed to alumina, Langmuir, 22(22), 9281-9286 (2006). Doi: https://doi.org/10.1021/ la061561s

E.M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin, M. Monajjemi, Estrogenic active stilbene derivatives as anti-cancer agents: A DFT and QSAR study, Phys. Chem. Liq., 49, 561-571 (2011). Doi: https://doi. org/10.1080/00319101003698992

B. Ghalandari, M. Monajjemi, F. Mollaamin, Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery, J. Comput. Theor. Nanosci., 8, 1212-1219 (2011). Doi: https://doi.org/10.1166/jctn.2011.1801

M. Monajjemi, N. Farahani, F. Mollaamin, Thermodynamic study of solvent effects on nanostructures: Phosphatidylserine and phosphatidylinositol membranes, Phys. Chem. Liq., 50, 161-172 (2012). Doi: https://doi.org/10.1080/00319104.2010.527842

M. Khaleghian, M. Zahmatkesh, F. Mollaamin, M. Monajjemi, Investigation of solvent effects on armchair single-walled carbon nanotubes: A QM/MD study, Fuller. Nanotub. Carbon Nanostructures, 19, 251-261 (2011). Doi: https://doi.org/10.1080/15363831003721757

Cómo citar

APA

Mollaamin, F. y Monajjemi, M. (2024). Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2). https://doi.org/10.15446/rcciquifa.v52n2.110734

ACM

[1]
Mollaamin, F. y Monajjemi, M. 2024. Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 2 (ene. 2024). DOI:https://doi.org/10.15446/rcciquifa.v52n2.110734.

ACS

(1)
Mollaamin, F.; Monajjemi, M. Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes. Rev. Colomb. Cienc. Quím. Farm. 2024, 52.

ABNT

MOLLAAMIN, F.; MONAJJEMI, M. Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 2, 2024. DOI: 10.15446/rcciquifa.v52n2.110734. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110734. Acesso em: 9 ago. 2024.

Chicago

Mollaamin, Fatemeh, y Majid Monajjemi. 2024. «Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (2). https://doi.org/10.15446/rcciquifa.v52n2.110734.

Harvard

Mollaamin, F. y Monajjemi, M. (2024) «Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2). doi: 10.15446/rcciquifa.v52n2.110734.

IEEE

[1]
F. Mollaamin y M. Monajjemi, «Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 2, ene. 2024.

MLA

Mollaamin, F., y M. Monajjemi. «Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 2, enero de 2024, doi:10.15446/rcciquifa.v52n2.110734.

Turabian

Mollaamin, Fatemeh, y Majid Monajjemi. «Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 2 (enero 22, 2024). Accedido agosto 9, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/110734.

Vancouver

1.
Mollaamin F, Monajjemi M. Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 22 de enero de 2024 [citado 9 de agosto de 2024];52(2). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110734

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

74

Descargas

Los datos de descargas todavía no están disponibles.