Publicado
Drugs solubility prediction in mono-solvents at various temperatures using a minimum number of experimental data points
Predicción de solubilidad de fármacos en mono-solventes a varias temperaturas utilizando un número mínimo de puntos de datos experimentales
Previsão de solubilidade de drogas em monossolventes em várias temperaturas usando um número mínimo de pontos de dados experimentais
DOI:
https://doi.org/10.15446/rcciquifa.v52n2.110747Palabras clave:
Solubility prediction, extrapolation method , mono-solvent systems , van’t Hoff equation, Hansen parameters, Catalan parameters (en)Predicción de solubilidad , método de extrapolación, sistemas monosolventes , ecuación de van’t Hoff , parámetros de Hansen , parámetros de Catalán (es)
Previsão de solubilidade, método de extrapolação , sistemas monossolvente , equação de van’t Hoff , Parâmetros de Hansen , Parâmetros catalães (pt)
Descargas
Introduction: Solubility is one of the most basic information in a re-crystallization process and in many cases, there are only a few grams (or even mg or mg) of an expensive pharmaceutical or fine chemical to make a large number of crystallization tests. Aim: To develop a computational procedure for prediction of drugs solubility in any mono-solvent and temperature of interest using a minimum number of experimental data points. Methods: For achieving this purpose, here, the available solubility data sets were collected from the recently published articles and selected a minimum data point of each dataset to train a simple model based on the well-known van’t Hoff equation combined with Abraham, Hansen and Catalan parameters as variables presenting the drug-solvent interactions in the solutions. After obtaining the model parameters, the next solubility data in each dataset was predicted by extrapolation method and the accuracy of model was estimated using the computation the mean percentage deviation of the back-calculated data. Results: The model adequately trained using a minimum data point could be used as a practical strategy for predicting the solubility of drugs in mono-solvents at different temperatures with acceptable prediction error and using minimum experimental efforts.
Introducción: la solubilidad es una de las informaciones más básicas en un proceso de recristalización y, en muchos casos, solo hay unos pocos gramos (o incluso mg o mg) de un producto farmacéutico o químico fino costoso para realizar una gran cantidad de pruebas de cristalización. Objetivo: desarrollar un procedimiento computacional para la predicción de la solubilidad de los fármacos en cualquier mono-solvente y la temperatura de interés utilizando un número mínimo de puntos de datos experimentales. Método: para lograr este propósito, aquí, los conjuntos de datos de solubilidad disponibles se recopilaron de los artículos publicados recientemente y se seleccionaron puntos de datos mínimos de cada conjunto de datos para entrenar un modelo simple basado en la conocida ecuación de van’t Hoff combinada con los parámetros de Abraham, Hansen, Catalán, como variables de presentación de las interacciones fármaco-disolvente en las soluciones. Después de obtener los parámetros del modelo, los siguientes datos de solubilidad en cada conjunto de datos se predijeron mediante el método de extrapolación y la precisión del modelo se estimó mediante el cálculo de la desviación porcentual media de los datos retrocalculados. Resultados: el modelo entrenado adecuadamente utilizando puntos de datos mínimos podría utilizarse como una estrategia práctica para predecir la solubilidad de fármacos en mono-solventes a diferentes temperaturas con un error de predicción aceptable y utilizando esfuerzos experimentales mínimos.
Introdução: a solubilidade é uma das informações mais básicas em um processo de recristalização e, em muitos casos, existem apenas alguns gramas (ou mesmo mg ou mg) de um produto farmacêutico ou químico fino caro para fazer um grande número de testes de cristalização. Objetivo: desenvolver um procedimento computacional para prever a solubilidade de drogas em quaisquer monossolventes e temperatura de interesse usando um número mínimo de pontos de dados experimentais. Métodos: para atingir esse objetivo, aqui, os conjuntos de dados de solubilidade disponíveis foram coletados dos artigos publicados recentemente e selecionados um mínimo de pontos de dados de cada conjunto de dados para treinar um modelo simples baseado na conhecida equação de van’t Hoff combinada com os parâmetros de Abraham, Hansen e Catalan como variáveis apresentando as interações fármaco-solvente nas soluções. Depois de obter os parâmetros do modelo, os próximos dados de solubilidade em cada conjunto de dados foram previstos pelo método de extrapolação e a precisão do modelo foi estimada usando o cálculo do desvio percentual médio dos dados calculados de volta. Resultados: o modelo adequadamente treinado usando um mínimo de pontos de dados pode ser usado como uma estratégia prática para predizer a solubilidade de drogas em monossolventes em diferentes temperaturas com erro de predição aceitável e usando esforços experimentais mínimos.
Referencias
1. A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton (FL), 2010. DOI: https://doi.org/10.1201/9781439804889
2. F. Martinez, A. Jouyban, W.E. Acree Jr, Pharmaceutical’s solubility is still nowadays widely studied everywhere, Pharm. Sci., 23, 1-2 (2017). DOI: https://doi.org/10.15171/PS.2017.01.
3. R. Sanghvi, R. Narazaki, S.G. Machatha, S.H. Yalkowsky, Solubility improvement of drugs using N-methyl pyrolidone, AAPS PharmSciTech, 9, 366-376 (2008). DOI: https://doi.org/10.1208/s12249-008-9050-z
4. S.H. Yalkowsky, Solubility and solubilization in aqueous media, American Chemical Society and Oxford University Press, New York (NY), 1999. DOI: https://doi.org/10.1021/ja0047424
5. W. Li, A. Farajtabar, R. Xing, Y. Zhu, H. Zhao, Equilibrium solubility determination, solvent effect and preferential solvation of amoxicillin in aqueous co-solvent mixtures of N, N-dimethylformamide, isopropanol, N-methyl pyrrolidone and ethylene glycol, J. Chem. Thermodyn., 142, 106010 (2020). DOI: https://doi.org/10.1016/j.jct.2019.106010
6. T. Loftsson, M.E. Brewster, Pharmaceutical applications of cyclodextrins: Basic science and product development, J. Pharm. Pharmacol., 62, 1607-1621 (2010), DOI: https://doi.org/10.1111/j.2042-7158.2010.01030.x
7. T. Takagi, C. Ramachandran, M. Bermejo, S. Yamashita, L.X. Yu, G.L. Amidon, A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan, Mol. Pharm., 3, 631-643 (2006). DOI: https://doi.org/10.1021/mp0600182
8. A. Jouyban, M. Fakhree, A. Shayanfar, Solubility prediction methods for drug/ drug like molecules, Recent Pat. Chem. Eng., 1, 220-231 (2008).
9. A. Konczol, G. Dargo, Brief overview of solubility methods: Recent trends in equilibrium solubility measurement and predictive models, Drug Discov. Today, 27, 3-17 (2018). DOI: https://doi.org/10.1016/j.ddtec.2018.06.001
10. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeny, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Del. Rev., 46, 3-26 (2001). DOI: https://doi.org/10.1016/S0169-409X(96)00423-1
11. J. Alsenz, M. Kansy, High throughput solubility measurement in drug discovery and development, Adv. Drug Del. Rev., 59, 546-567 (2007). DOI: https://doi.org/10.1016/j.addr.2007.05.007
12. S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: Review of recent advances and business prospects, Acta Pharm. Sin. B, 5, 442-453 (2015). DOI: https://doi.org/10.1016/j.apsb.2015.07.003
13. S.S. Ren, B.D. Anderson, What determines drugs solubility in lipid vehicles: Is it predictable?, Adv. Drug Del. Rev., 60, 638-656 (2008). DOI: https://doi.org/10.1016/j.addr.2007.10.015
14. W.L. Jorgensen, E.M. Duffy, Prediction of drug solubility from structure, Adv. Drug Del. Rev., 54, 355-366 (2002). DOI: https://doi.org/10.1016/S0169-409X(02)00008-X.
15. M. Mirmehrabi, S. Rohani, L. Perry, Thermodynamic modeling of activity coefficient and prediction of solubility: Part 1. Predictive models, J. Pharm. Sci., 95, 790-797 (2005). DOI: https://doi.org/10.1002/jps.20576
16. A. Jouyban, E. Rahimpour, Z. Karimzadeh, A new correlative model to simulate the solubility of drugs in mono-solvent systems at various temperatures, J. Mol. Liq., 343, 117587 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.117587
17. X. Ji CL, J. Li, B. Hou, L. Zhou, Ch. Xie, J. Gong, W. Chen, J. Zhao, Measurement and comprehensive analysis of the solubility of abacavir in twelve pure solvents, J. Mol. Liq., 338, 116603 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.116603
18. Zh. Wang, J. Dong, Zh. Li, L. Ding, B. Wang, Measurement and correlation of the solubility of antipyrine in ten pure and water + ethanol mixed solvents at temperatures from (288.15 to 328.15) K, J. Mol. Liq., 268, 256-265 (2018). DOI: https://doi.org/10.1016/j.molliq.2018.07.061
19. M. Liu, S. Wang, C. Qu, Z. Zhang, Y. Qu, Solubility determination and thermodynamic properties of bezafibrate in pure and binary mixed solvents, J. Chem. Eng. Data, 65, 2156-2169 (2020). DOI: https://doi.org/10.1021/acs.jced.0c00025
20. W. Hong, S. Jia, Z. Li, W. Li, Z. Gao, Solubility determination and thermodynamic correlation of chlorphenesin in 12 pure solvents from 288.15 to 328.15 K, J. Chem. Eng. Data, 66, 822-831 (2021). DOI: https://doi.org/10.1021/acs.jced.0c00900
21. Y. Wu, C. Wu, S. Yan, B. Hu, Solubility of bisacodyl in pure solvent at various temperatures: data correlation and thermodynamic property analysis, J. Chem. Eng. Data, 65, 43-48 (2020). DOI: https://doi.org/10.1021/acs.jced.9b00728
22. Y. Wu, J. Wu, J. Wang, J. Gao, Effect of solvent properties and composition on the solubility of ganciclovir form I, J. Chem. Eng. Data, 64, 1501-1507 (2019). DOI: https://doi.org/10.1021/acs.jced.8b01080
23. S. Li, Y. Liu, F. Yin, X. Ye, Solubility measurement and thermodynamic properties of levetiracetam in pure and mixed solvents, J. Chem. Eng. Data, 63, 4669- 4681 (2018). DOI: https://doi.org/10.1021/acs.jced.8b00720
24. Y. Zhao, H. Yang, Z. Shang, T. Gong, X. Zhang, S. Wu, Solubility determination and correlation of glibenclamide in 11 monosolvents and (acetone + acetonitrile) binary solvents from 283.15 K to 323.15 K, J. Chem. Eng. Data, 64, 189- 201 (2019). DOI: https://doi.org/10.1021/acs.jced.8b00717
25. G. Hu, H. Li, X. Wang, Y. Zhang, Measurement and correlation of griseofulvin solubility in different solvents at temperatures from (281.95 to 357.60) K, J. Chem. Eng. Data, 55, 3969-3971 (2010). DOI: https://doi.org/10.1021/je100030j
26. S. Wang, N. Chen, Y. Qu, Solubility of florfenicol in different solvents at temperatures from (278 to 318) K, J. Chem. Eng. Data, 56, 638-641 (2011). DOI: https://doi.org/10.1021/je1008284
27. C. L. Zhang, B. Y. Li, Y. Wang, Solubilities of norfloxacin in ethanol, 1-propanol, acetone, and chloroform from 294.15 to 318.15 K, Can. J. Chem. Eng., 88, 63-66 (2010). DOI: https://doi.org/10.1002/cjce.20247
28. K. Zhang, H. Shen, S. Xu, H. Zhang, M. Zhu, P. Shi, et al., Thermodynamic study of solubility for pyrazinamide in ten solvents from T = (283.15 to 323.15) K, J. Chem. Thermodyn., 112, 204-212 (2017). DOI: https://doi.org/10.1016/j.jct.2017.04.014
29. Y. Hu, G. Wu, P. Gu, W. Yang, C. Wang, Z. Ding, et al., Thermodynamic models for determination of the solubility of omeprazole in pure and mixture organic solvents from T = (278.15 to 333.15) K, J. Chem. Thermodyn., 94, 177-185 (2016). DOI: https://doi.org/10.1016/j.jct.2015.11.005
30. H. Niu, Z. Cao, X. Yang, J. Sha, Y. Li, T. Li, et al., The solubility data, Hansen solubility parameter and dissolution thermodynamic properties of riluzole in twelve organic solvents, J. Chem. Thermodyn., 162, 106569 (2021). DOI: https://doi.org/10.1016/j.jct.2021.106569
31. Y. Wang, Y. Liu, S. Xu, Y. Liu, P. Yang, S. Du, et al., Determination and modelling of troxerutin solubility in eleven mono-solvents and (1,4-dioxane+2-propanol) binary solvents at temperatures from 288.15 K to 323.15 K, J. Chem. Thermodyn., 104, 138-149 (2017). DOI: https://doi.org/10.1016/j.jct.2016.09.015
32. Y. Wu, J. Gao, S. Yan, C. Wu, B. Hu, The dissolution behavior and apparent thermodynamic analysis of temozolomide in pure and mixed solvents, J. Chem. Thermodyn., 132, 54-61 (2019). DOI: https://doi.org/10.1016/j.jct.2018.11.026
33. R. Li, X. Chen, G. He, C. Wu, Z. Gan, Z. He, et al., The dissolution behaviour and thermodynamic properties calculation of praziquantel in pure and mixed organic solvents, J. Chem. Thermodyn., 144, 106062 (2020). DOI: https://doi.org/10.1016/j.jct.2020.106239
34. J. Sha, T. Ma, R. Zhao, P. Zhang, R. Sun, G. Jiang, et al., The dissolution behaviour and apparent thermodynamic analysis of doxifluridine in twelve pure solvents at various temperatures, J. Chem. Thermodyn., 144, 106073 (2020). DOI: https://doi.org/10.1016/j.jct.2020.106062
35. Z. Cao, R. Zhang, X. Hu, J. Sha, G. Jiang, Y. Li, et al., Thermodynamic modelling, Hansen solubility parameter and solvent effect of oxaprozin in thirteen pure solvents at different temperatures, J. Chem. Thermodyn., 151, 106239 (2020). DOI: https://doi.org/10.1016/j.jct.2020.106073
36. Z. Huang, Y. Zun, Y. Gong, X. Hu, J. Sha, Y. Li, et al., Solid-liquid equilibrium solubility, thermodynamic properties, solvent effect of Ipriflavone in twelve pure solvents at various temperatures, J. Chem. Thermodyn., 150, 106231 (2020). DOI: https://doi.org/10.1016/j.jct.2020.106231
37. W. Hu, Z. Shang, N. Wei, B. Hou, J. Gong, Y. Wang, Solubility of benorilate in twelve monosolvents: Determination, correlation and COSMO-RS analysis, J. Chem. Thermodyn., 152, 106272 (2021). DOI: https://doi.org/10.1016/j.jct.2020.106272
38. R. Sun, H. He, Y. Wan, L. Li, J. Sha, G. Jiang, et al., Kojic acid in fourteen mono-solvents: Solubility data, Hansen solubility parameter and thermodynamic properties, J. Chem. Thermodyn., 152, 106280 (2021). DOI: https://doi.org/10.1016/j.jct.2020.106280
39. J. Ma, H. Li, Z. Cao, J. Sha, R. Sun, H. He, et al., Solid-liquid phase equilibrium of Nintedanib in ten pure solvents: Determination, thermodynamic analysis, model correlation and molecular simulation, J. Chem. Thermodyn., 163, 106595 (2021). DOI: https://doi.org/10.1016/j.jct.2021.106595
40. S. Yu, Y. Cheng, S. Du, Y. Wang, F. Xu, W. Xing, Thermodynamic analysis of the solubility of clozapine in organic solvents, J. Chem. Thermodyn., 158, 106451 (2021). DOI: https://doi.org/10.1016/j.jct.2021.106451
41. L. Ding, B. Wang, F. Wang, J. Dong, G. Zhou, H. Li, Measurement and correlation of the solubility of dipyrone in ten mono and water + ethanol mixed solvents at temperatures from (293.15 to 332.85) K, J. Mol. Liq., 241, 742-750 (2017). DOI: https://doi.org/10.1016/j.molliq.2017.06.072
42. S. Zong, J. Wang, Y. Xiao, H. Wu, Y. Zhou, Y. Guo, et al., Solubility and dissolution thermodynamic properties of lansoprazole in pure solvents, J. Mol. Liq., 241, 399-406 (2017). DOI: https://doi.org/10.1016/j.molliq.2017.06.037
43. Y. Yu, F. Li, S. Long, L. Xu, G. Liu, Solubility, thermodynamic properties, HSP, and molecular interactions of vitamin K3 in pure solvents, J. Mol. Liq., 317, 113945 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.113945
44. G. Zhou, B. Wang, L. Ding, J. Dong, F. Wang, C. Feng, Measurement and correlation of the solubility of Lidocaine in eight pure and mixed solvents at temperatures from (292.15 to 332.15) K, J. Mol. Liq., 242, 168-174 (2017). DOI: https://doi.org/10.1016/j.molliq.2017.06.110
45. X. Hu, Y. Gong, Z. Cao, Z. Huang, J. Sha, Y. Li, et al., Solubility, Hansen solubility parameter and thermodynamic properties of etodolac in twelve organic pure solvents at different temperatures, J. Mol. Liq., 316, 113779 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.113779
46. R. Sun, Y. Wang, H. He, Y. Wan, L. Li, J. Sha, et al., Solubility measurement, solubility behavior analysis and thermodynamic modelling of melatonin in twelve pure solvents from 278.15 K to 323.15 K, J. Mol. Liq., 319, 114139 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.114139
47. S. Guo, Z. Li, S. Du, C. Zhao, M. Wang, X. Su, et al., Thermodynamic analysis and molecular dynamic simulation of solid-liquid phase equilibrium of imazapyr in twelve pure organic solvents, J. Mol. Liq., 330, 115631 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.115631
48. R. Sun, Y. Wen, H. He, L. Yuan, Y. Wan, J. Sha, et al., Uridine in twelve pure solvents: Equilibrium solubility, thermodynamic analysis and molecular simulation, J. Mol. Liq., 330, 115663 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.115663
49. X. Su, C. Yu, P. Zhao, M. Wang, C. Zhao, M. Chen, et al., Solid-liquid equilibrium and thermodynamic analysis of elastically bendable crystal celecoxib in thirteen pure solvents based on experiments and molecular simulation, J. Mol. Liq., 338, 116706 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.116706
50. C. Zhao, J. Lin, Y. Gao, S. Guo, R. Liu, S. Wu, Solid-liquid equilibrium behavior, thermodynamic analysis and molecular simulation of dimetridazole in twelve organic solvents, J. Mol. Liq., 336, 116252 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.116252
51. Y. Chong, Q. Liu, Z. Wang, L. Zhu, F. Guo, Y. Li, et al., Solubility, MD simulation, thermodynamic properties and solvent effect of perphenazine (Form I) in eleven neat organic solvents ranged from 278.15 K to 318.15 K, J. Mol. Liq., 348, 118184 (2022). DOI: https://doi.org/10.1016/j.molliq.2021.118184.
52. L. Jia, J. Yang, P. Cui, D. Wu, S. Wang, B. Hou, et al., Uncovering solubility behavior of Prednisolone form II in eleven pure solvents by thermodynamic analysis and molecular simulation, J. Mol. Liq., 342, 117376 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.117376
53. L. Yuan, Z. Cao, R. Sun, H. He, Y. Ren, H. Niu, et al., Experimental measurement, thermodynamic analysis and molecular simulation of topiramate solubility in fourteen mono-solvents at various temperatures, J. Mol. Liq., 342, 116992 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.116992
54. Z. Yu Yw, M. Zhu, L. Zhou, Measurement and correlation of solubility and thermodynamic properties of vinpocetine in nine pure solvents and (ethanol + water) binary solvent, J. Chem. Eng. Data, 64, 150-160 (2019). DOI: https://doi.org/10.1021/acs.jced.8b00663.
55. Y. Cong CD, M. Wang, Zh. Jiang, K. Xing, Y. Bian, M. Wang, Investigation on the Hansen solubility parameter, solvent effect and thermodynamic analysis of indapamide dissolution and molecular dynamic simulation, J. Mol. Liq., 334, 116489 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.116489
56. B. Tian YF, X. Li, J. Yang, Zh. Ding, X. Huang, Q. Yin, Ch. Xie, H. Hao, Solution thermodynamic properties of flurbiprofen in twelve solvents from 283.15 to 323.15 K, J. Mol. Liq., 296, 111744 (2019). DOI: https://doi.org/10.1016/j.molliq.2019.111744
57. P. Zhang CZ, R. Zhao, Y. Wan, Zh. Yang, R. He, Q. Chen, T. Li, B. Ren, Measurement and correlation of the solubility of florfenicol form A in several pure and binary solvents, J. Chem. Eng. Data, 63, 2046-2055 (2018). DOI: https://doi.org/10.1021/acs.jced.8b00043.
58. X. Dong Y. Cao, N. Wang, P. Wang, M. Li, Systematic study on solubility of chrysin in different organic solvents: the synergistic effect of multiple intermolecular interactions on the dissolution process, J. Mol. Liq., 325, 115180 (2021). DOI: https://doi.org/10.1016/j.molliq.2020.115180.
59. J. Ma, X. Huang, N. Wang, X. Li, Y. Bao, T. Wang, et al., Solubility and thermodynamic mixing and dissolution properties of empagliflozin in pure and binary solvent systems, J. Mol. Liq., 309, 113004 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.113004.
60. M.J.C. Zheng, G. Chen, A. Farajitabar, H. Zhao, Solubility modelling and solvent effect for domperidone in twelve green solvents, J. Mol. Liq., 261, 50-56 (2018). DOI: https://doi.org/10.1016/j.molliq.2018.03.121
61. J. Ma, X. Huang, N. Wang, X. Li, Y. Bao, T. Wang, et al., Solubility and thermodynamic mixing and dissolution properties of empaglifozine inpure and binary solvent systems, J. Mol. Liq., 309, 113004 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.113004.
62. J.H. van’t Hoff, L’équilibre chimique dans les systèmes gazeux on dissous à l’état dilué, Archives Neerlandaises des Sciences Exactes et Naturelles, 20, 239-302 (1886). DOI: https://doi.org/10.1002/recl.18850041207.
63. D.M. Stovall, C. Givens, S. Keown, K.R. Hoover, R. Barnes, C. Harris, et al., Solubility of crystalline nonelectrolyte solutes in organic solvents: Mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model, Phys. Chem. Liq., 43, 351-360 (2005). DOI: https://doi.org/10.1080/00319100500111293
64. C.M. Hansen, Hansen solubility parameters: A user’s handbook, CRC Press, Boca Raton (FL), 2007.
65. J. Catalan, Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium, J. Phys. Chem. B, 113, 5951-5960 (2009). DOI: https://doi.org/10.1021/jp8095727
66. A. Hatefi, A. Jouyban, E. Mohammadian, W.E. Acree, Jr., E. Rahimpour, Prediction of paracetamol solubility in cosolvency systems at different temperatures, J. Mol. Liq., 273, 282-289 (2019). DOI: https://doi.org/10.1016/j.molliq.2018.10.031.
67. E. Rahimpour, E. Mohammadian, W.E. Acree, Jr., A. Jouyban, Computational tools for solubility prediction of celecoxib in the binary solvent systems, J. Mol. Liq., 299, 112129 (2020). DOI: https://doi.org/10.1016/j.molliq.2019.112129
68. E. Rahimpour, W.E. Acree, Jr., A. Jouyban, Prediction of sulfonamides’ solubilities in the mixed solvents using solvation parameters, J. Mol. Liq., 339, 116269 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.116269
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13