Publicado

2024-01-22

Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales

Preparation of a modified bioadsorbent from shrimp waste for the decontamination of wastewater

Preparação de um bioadsorvente modificado a partir de resíduos de camarão para a descontaminação de águas residuais

DOI:

https://doi.org/10.15446/rcciquifa.v52n2.110751

Palabras clave:

Desechos de camarón, remoción de fármacos contaminantes, bioadsorbentes (es)
Shrimp waste, removal of contaminating drugs, bioadsorbents (en)
Resíduos de camarão, remoção de drogas contaminantes, bioadsorventes (pt)

Descargas

Autores/as

  • Cesar Augusto Londoño Giraldo Universidad de Antioquia
  • Kelly Barrera Enriquez Universidad de Antioquia
  • John Jairo Rojas Camargo Universidad de Antioquia

Objetivo: desarrollar un bioadsorbente modificado químicamente a partir de los desechos de camarón para la remoción de fármacos de aguas residuales. Métodos: se elaboraron bioadsorbentes mediante pirolisis y activación química con ácido fosfórico, urea y ferromagnetita, usando como precursor exoesqueleto de camarón. Los bioadsorbentes producidos se caracterizaron por espectrofotometría FT-IR, volumen real, área superficial, punto de carga zero (PZC), y titulaciones Boehm. También se retaron según su capacidad adsorbente respecto a ocho de los fármacos más consumidos en Colombia. La interrelación de estas variables se estudió por análisis multivariado. Resultados: el carbonizado (CAR) contenía prevalencia de elementos tipo carbono y oxigeno producto de la pirolisis intensificando las bandas de C-O-C, CH2 y algunos grupos fenólicos. La superficie de los materiales activados con H3PO4 (CA1:3A y CA1:3B) contenía grupos ácidos como P=O, P–O–C y P=OOH, pero estos no aumentaron significativamente el volumen real y el área superficial específica (11,4 m2/g) al compararse con EE (10,3 m2/g). En el CA1:3U prevalecieron grupos fenólicos, y básicos como C-O y C-N, mientras el CAM poseía grupos Fe-O y FeOH. Así, el CAM y CA1:3U mostraron un alto porcentaje de remoción, especialmente para el verapamilo (~100%), amlodipino (>45%) y ampicilina (>45%). En cambio, la remoción de metformina fue ineficiente con la mayoría de adsorbentes (<40%). Conclusión: estos biodsorbentes se presentan como una alternativa para la reducción de aguas contaminadas por fármacos, especialmente por verapamilo y amlodipino, y ayudan a mitigar el impacto ambiental ocasionado por los residuos de camarón.

Aim: To develop a chemically modified bioadsorbent from shrimp waste for the removal of drugs from wastewater. Methods: Bioadsorbents were made by pyrolysis and chemical activation with phosphoric acid, urea, and ferromagnetite, using shrimp waste as a precursor. Results: The bioadsorbents were characterized by FT-IR spectrophotometry, true volume, surface area, Zero Point Charge (PZC), and Boehm titrations. They were also challenged based on their adsorbent capacity with respect to eight of the most widely consumed drugs in Colombia. The interrelation of these variables was studied by multivariate analysis. The biochar (CAR) contained a prevalence of elements such as carbon and oxygen, product of pyrolysis, intensifying the bands of C-O-C, CH2 and some phenolic groups. The surface of the materials activated with H3PO4 (CA1:3A and CA1:3B) contained acid groups such as P=O, P–O–C, and P=OOH, but these did not significantly increase the actual volume and specific surface area (11.4 m2/g) when compared to EE (10.3 m2/g). In CA1:3U, phenolic groups prevailed and basic ones such as C-O and C-N, while CAM had Fe-O and FeOH groups. Thus, CAM and CA1:3U showed a high clearance rate, especially for verapamil (~100%), amlodipine (>45%), and ampicillin (>45%). In contrast, metformin removal was inefficient with most adsorbents (<40%). Conclusion: These biosorbents are presented as an alternative to reduce water contaminated by drugs, especially verapamil and amlodipine, and help mitigate the environmental impact caused by shrimp waste.

Referencias

D.M. Quijano-Prieto, Impacto ambiental de los medicamentos. Una aproximación desde el pensamiento ambiental, Tesis de Maestría en Medio Ambiente y Desarrollo, Universidad Nacional de Colombia, 2016.

Organización Mundial de la Salud y Fondo de las Naciones Unidas para la Infancia, Agua, saneamiento, higiene y gestión de desechos en relación con el virus de la COVID-19, 2020. p. 1-10. URL: https://apps.who.int/iris/bitstream/handle/10665/331929/WHO-2019-nCoV-IPC_WASH-2020.3-spa. pdf?sequence=1&isAllowed=y

M. DellaGreca, M.R. Iesce, M. Isidori, S. Montanaro, L. Previtera, M. Rubino, Phototransformation of amlodipine in aqueous solution : Toxicity of the drug and its photoproduct on aquatic organisms, Int. J. Photoenergy, 2007, 063459 (2007). Doi: https://doi.org/10.1155/2007/63459

A.A. Godoy, F. Kummrow, P.A.Z. Pamplin, Ecotoxicological evaluation of propranolol hydrochloride and losartan potassium to Lemna minor L. (1753) individually and in binary mixtures, Ecotoxicology, 24(5), 1112-1123 (2015). Doi: https://doi.org/10.1007/s10646-015-1455-3

D.M. Montoya-Rodríguez, E.A. Serna-Galvis, F. Ferraro, R.A. Torres-Palma, Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes-Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine, J. Environ. Manage., 261, 110224 (2020). Doi: https://doi.org/10.1016/j.jenvman.2020.110224

H.R. Pouretedal, N. Sadegh, Effective removal of amoxicillin, cephalexin, tetracycline and penicillin g from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1, 64-73 (2014). Doi: https://doi.org/10.1016/j.jwpe.2014.03.006

M. Paredes-Laverde, J. Silva-Agredo, R.A. Torres-Palma, Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents, J. Environ. Manage., 213, 98-108 (2018). Doi: https://doi.org/10.1016/j.jenvman.2018.02.047

S. Dalahmeh, L. Ahrens, M. Gros, K. Wiberg, M. Pell, Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm, Sci. Total Environm., 612, 192-201 (2018). Doi: http://doi.org/10.1016/j.scitotenv.2017.08.178

L. Zhang, F. Sun, D. Wu, W. Yan, Y. Zhou, Biological conversion of sulfamethoxazole in an autotrophic denitrification system, Water Res., 185, 116156 (2020). Doi: https://doi.org/10.1016/j.watres.2020.116156

R.C. Ferreira, H.H.C. de Lima, A.A. Cândido, O.M. Couto Jr, P.A. Arroyo, K.Q. de Carvalho, G.F. Gauze, M.A.S.D. Barros, Adsorption of paracetamol using activated carbon of dende and babassu coconut mesocarp, International Journal of Biotechnology and Bioengineering, 9(7), 717-722 (2015).

D. Shan, S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, et al., Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling, J. Hazard Mater., 305, 156-163 (2016). Doi: https://doi.org/10.1016/j.jhazmat.2015.11.047

S. Chauhan, T. Shaf, B. Dubey, S. Chowdhury, Biochar‑mediated removal of pharmaceutical compounds from aqueous matrices via adsorption, Waste Dispos. Sustain. Energy, 5(1), 37-62 (2023). Doi: https://doi.org/10.1007/s42768-022-00118-y

S. Mondal, K. Sinha, K. Aikat, G. Halder, Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung bean husk, J. Environ. Chem. Eng., 3, 187-195 (2015). Doi: https://doi.org/10.1016/j.jece.2014.11.021

G.J.P. Fernando, J. Hickling, C.M. Jayashi-Flores, P. Griffin, C.D. Anderson, S.R. Skinner, et al., Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (NanopatchTM), Vaccine, 36, 3779-3788 (2018). Doi: https:// doi.org/10.1016/j.vaccine.2018.05.053

J.R. de Andrade, M.G.C. da Silva, M.L. Gimenes, M.G.A. Vieira, Performance of organoclay in adsorptive uptake of antihypertensive losartan potassium: A comparative batch study using micro-grain activated carbon, J. Environ. Chem. Eng., 8(3), 103562 (2020). Doi: https://doi.org/10.1016/j.jece.2019.103562

Y. Wu, W. Liu, Y. Wang, X. Hu, Z. He, X. Chen, et al., Enhanced removal of antibiotic in wastewater using liquid nitrogen-treated carbon material: Material properties and removal mechanisms, Int. J. Environ. Res. Public Health, 15, 2652 (2018). Doi: https://doi.org/10.3390/ijerph15122652

N. Rahman, P. Varshney, Assessment of ampicillin removal efficiency from aqueous solution by polydopamine/zirconium(iv) iodate: optimization by response surface methodology, RSC Adv., 10, 20322-20337 (2020). Doi: https://doi.org/10.1039/D0RA02061C

X. Weng, W. Cai, R. Lan, Q. Sun, Z. Chen, Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles, Environ. Pollut., 236, 562-569 (2018). Doi: https://doi.org/10.1016/j.envpol.2018.01.100

R.A. Al-Bayati, A.S. Ahmed, Adsorption studies of enalapril maleat in solution on selected iraqi clays, Int. J. Chem., 3(3), 134-140 (2011).

T. Tokumura, Y. Watarai, Y. Morita, Adsorption of amlodipine besylate to corn starch and microcrystalline cellulose suspended in aqueous solution, J. Pharm. Sci. Technol., 81(2), 200-204 (2021).

M. Amiri, H. Imanzade, Adsorption of amlodipine at the surface of tosyl—carbon nanoparticles for electrochemical sensing, Iran. J. Pharm. Res., 15(3), 303- 311 (2016).

A.H. Mohammad, I. Radovic, M. Ivanović, M. Kijevčanin, Adsorption of metformin on activated carbon produced from the water hyacinth biowaste using H3PO4 as a chemical activator, Sustainability, 14(18), 11144 (2022). Doi: https://doi.org/10.3390/su141811144

M.R. Elamin, B.Y. Abdulkhair, F.K. Algethami, L. Khezami, Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay, Sci Rep., 11, 13606 (2021). Doi: https://doi.org/10.1038/ s41598-021-93040-y

S. Kim, F. Gholamirad, M. Yu, C. Park, A. Jang, M. Jang, et al., Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene, Chem. Eng. J., 406, 126789 (2021). Doi: https://doi.org/10.1016/j.cej.2020.126789

Y. Deng, Y. Li, W. Nie, X. Gao, L. Zhang, P. Yang, X. Tan, Fast removal of propranolol from water by attapulgite/graphene oxide magnetic ternary composites, Materials (Basel), 12, 924 (2019). Doi: https://doi.org/10.3390/ma12060924

D.C. do Nascimento, M.G.C. da Silva, M.G.A. Vieira, Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: A complete batch system evaluation, J. Mol. Liq., 337,116442 (2021). Doi: https://doi.org/10.1016/j.molliq.2021.116442

B.A. Cheba, T.I. Zaghloul, A.R. El-Mahdy, M.H. El-Massry, Effect of nitrogen sources and fermentation conditions on bacillus sp. R2 chitinase production, Procedia Manuf., 22, 280-287 (2018). Doi: https://doi.org/10.1016/j. promfg.2018.03.043

J. Rojas, Y. Ciro, J. Quintero, J. Silva, Comparative evaluation of sonicated shrimp waste hydrolysates as potential fertilizers for legumes, Am. Soc. Hortic. Sci., 54(9), 1585-1592 (2019). Doi: https://doi.org/10.21273/HORTSCI14103-19

X. Liu, C. He, X. Yu, Y. Bai, L. Ye, B. Wang, et al., Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption, Powder Technol., 326(3), 181- 189 (2018). Doi: https://doi.org/10.1016/j.powtec.2017.12.034

J. Rojas, D. Suarez, A. Moreno, J. Silva-Agredo, R. Torres-Palma, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of crystal violet dye onto shrimp-waste in its raw, pyrolyzed material and activated charcoals, Appl. Sci., 9, 5337 (2019). Doi: https://doi.org/10.3390/app9245337

G.L Dotto, J.M. Cunha, C.O. Calgaro, E.H. Tanabe, D.A. Bertuol, Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption, J. Hazard. Mater., 295, 29-36 (2015). Doi: https://doi.org/10.1016/j.jhazmat.2015.04.009

X. Shen, J.L. Shamshina, P. Berton, G. Gurau, R. Rogers, Hydrogels based on cellulose and chitin: Fabrication, properties, and applications, Green Chem., 18, 53-75 (2016). Doi: https://doi.org/10.1039/C5GC02396C

G.C. da Fonseca, M. Silva-Oliveira, C.V. Costa-Martins, J.C. Perbone de Souza, How the carbonization time of sugarcane biomass affects the microstructure of biochar and the adsorption process? Sustainability, 14(3) 1571 (2022). Doi: https://doi.org/10.3390/su14031571

J. Kennedy, Z. Murthy, Activated carbon: classifications, properties and applications, en: J. Kwiatkowski (editor), Chemical engineering methods and technology, Nova Science Publishers, New York (NY), 2012. p. 239-267.

S.-A. Mohtashami, N.A. Kolur, T. Kaghazchi, R. Asadi-kesheh, M. Soleimani, Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol, Turkish J. Chem., 42(6), 1720-1735 (2018). Doi: https://doi.org/10.3906/kim-1806-71

I. Gan, W. Chow, Tailoring chemical, physical , and morphological properties of sugarcane bagasse cellulose nanocrystals via phosphorylation method, J. Nat. Fibers, 18(10), 1448-1459. Doi: https://doi.org/10.1080/15440478.2019.169 1120.

X. Xu, T. Yuan, Y. Zhou, Y. Li, J. Lu, X. Tian, et al., Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media, Int. J. Hydrogen Energy, 39(28), 16043-16052 (2013). Doi: http://dx.doi.org/10.1016/j.ijhydene.2013.12.079

H. Xu, X. Zhang, Y. Zhang, Modification of biochar by Fe2O3 for the removal of pyridine and quinoline pyridine and quinolone, Environ. Technol., 39(11), 1470-1480 (2017). Doi: https://doi.org/10.1080/09593330.2017.1332103

D. Cuhadaroglu, O. Uygun, Production and characterization of activated carbon from a bituminous coal by chemical activation, African J. Biotechnol., 7(20), 3703-3710 (2008).

Cómo citar

APA

Londoño Giraldo, C. A., Barrera Enriquez, K. y Rojas Camargo, J. J. (2024). Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2). https://doi.org/10.15446/rcciquifa.v52n2.110751

ACM

[1]
Londoño Giraldo, C.A., Barrera Enriquez, K. y Rojas Camargo, J.J. 2024. Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 2 (ene. 2024). DOI:https://doi.org/10.15446/rcciquifa.v52n2.110751.

ACS

(1)
Londoño Giraldo, C. A.; Barrera Enriquez, K.; Rojas Camargo, J. J. Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales. Rev. Colomb. Cienc. Quím. Farm. 2024, 52.

ABNT

LONDOÑO GIRALDO, C. A.; BARRERA ENRIQUEZ, K.; ROJAS CAMARGO, J. J. Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 2, 2024. DOI: 10.15446/rcciquifa.v52n2.110751. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110751. Acesso em: 9 ago. 2024.

Chicago

Londoño Giraldo, Cesar Augusto, Kelly Barrera Enriquez, y John Jairo Rojas Camargo. 2024. «Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (2). https://doi.org/10.15446/rcciquifa.v52n2.110751.

Harvard

Londoño Giraldo, C. A., Barrera Enriquez, K. y Rojas Camargo, J. J. (2024) «Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2). doi: 10.15446/rcciquifa.v52n2.110751.

IEEE

[1]
C. A. Londoño Giraldo, K. Barrera Enriquez, y J. J. Rojas Camargo, «Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 2, ene. 2024.

MLA

Londoño Giraldo, C. A., K. Barrera Enriquez, y J. J. Rojas Camargo. «Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 2, enero de 2024, doi:10.15446/rcciquifa.v52n2.110751.

Turabian

Londoño Giraldo, Cesar Augusto, Kelly Barrera Enriquez, y John Jairo Rojas Camargo. «Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 2 (enero 22, 2024). Accedido agosto 9, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/110751.

Vancouver

1.
Londoño Giraldo CA, Barrera Enriquez K, Rojas Camargo JJ. Elaboración de un bioadsorbente modificado a partir de los desechos de camarón para la descontaminación de aguas residuales. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 22 de enero de 2024 [citado 9 de agosto de 2024];52(2). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110751

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

151

Descargas

Los datos de descargas todavía no están disponibles.