Publicado
Estado de metilación de regiones promotoras de tres genes de respuesta inflamatoria en una muestra de colombianos con problemas de consumo de alcohol: un estudio exploratorio
Methylation status of promoter regions of three inflammatory response genes in a sample of Colombians with alcohol consumption problems - an exploratory study
Estado de metilação de regiões promotoras de três genes de resposta inflamatória em uma amostra de colombianos com problemas de consumo de álcool – um estudo exploratório
DOI:
https://doi.org/10.15446/rcciquifa.v53n1.110956Palabras clave:
Metilación, modificación con bisulfito, respuesta inflamatoria, ALCOHOL, SNCA, MIF, IFNGR1 (es)Methylation, bisulfite modification, inflammatory response, alcohol, SNCA, MIF, IFNGR1 (en)
Metilação, modificação de bissulfito, resposta inflamatória, álcool, SNCA, MIF, IFNGR1 (pt)
Descargas
Introducción: La dependencia del alcohol exhibe un patrón de herencia multifactorial. Las vías de respuesta inflamatoria han despertado un interés particular, específicamente el aspecto epigenético está muy influenciado étnicamente y por la evolución personal de la enfermedad. Objetivo: Comparar el estado de metilación de una región promotora con islas CpG de algunos genes candidatos a dianas farmacéuticas en la vía de respuesta inflamatoria, entre controles e individuos con consumo problemático de alcohol de una muestra de una población universitaria colombiana. Métodos: Previamente, se realizaron estudios sobre 29 variantes genéticas que afectan a 10 genes implicados en la respuesta inflamatoria. Luego se realizó análisis de la expresión de ARNm y proteínas de algunos de estos genes, perfilando a tres genes para estudios de metilación, a saber, SNCA, MIF e IFNGR1. Se analizó el estado de metilación del ADN modificado con bisulfito mediante PCR con marcaje fluorescente, electroforesis capilar y validación con secuenciación de Sanger. Resultados: Existen cambios en el estado de metilación del promotor de los genes MIF y SNCA en los casos. Se observó concordancia entre la expresión génica y el estado de metilación en MIF en la muestra general, y también con la síntesis de ARNm-SNCA, sin cambios apreciables en la proteína, aunque con diferencias según el sexo. Conclusión: Nuestro estudio proporcionó información sobre el estado de metilación de los promotores SNCA y MIF y su relación con la expresión génica en fenotipos de consumo problemático de alcohol. Estas dos proteínas se proponen como candidatas para estudios de modelado.
Introduction: Alcohol dependence exhibits a multifactorial inheritance pattern. The inflammatory response pathways have aroused particular interest, specifically the epigenetic aspect is highly influenced by ethnicity and by the personal evolution of the disease. Objective: To compare the methylation status of a promoter region with CpG islands of some candidate genes for pharmaceutical targets in the inflammatory response pathway, between controls and individuals with problematic alcohol consumption from a sample of a Colombian university population. Methods: Previously, studies were carried out on 29 genetic variants that affect 10 genes involved in the inflammatory response. Analysis of the mRNA and protein expression of some of these genes was then performed, profiling three genes for methylation studies, namely SNCA, MIF, and IFNGR1. The methylation status of bisulfite-modified DNA was analyzed by PCR with fluorescent labeling, capillary electrophoresis, and validation with Sanger sequencing. Results: There are changes in the methylation state of the promoter of the MIF and SNCA genes in the cases. Concordance was observed between gene expression and methylation status in MIF in the general sample, and also in the synthesis of mRNA-SNCA, without appreciable changes in the protein, although with differences according to sex. Conclusion: Our study provided information on the methylation status of the SNCA and MIF promoters and its relationship with expression in problem drinking phenotypes. These two proteins are proposed as candidates for modeling studies.
Introdução: A dependência do álcool apresenta um padrão de herança multifatorial. As vias de resposta inflamatória têm despertado particular interesse, especificamente o aspecto epigenético é altamente influenciado etnicamente e pela evolução pessoal da doença. Objetivo: Comparar o estado de metilação de uma região promotora com ilhas CpG de alguns genes candidatos a alvos farmacêuticos na via de resposta inflamatória, entre controles e indivíduos com consumo problemático de álcool de uma amostra de uma população universitária colombiana. Métodos: Anteriormente, foram realizados estudos com 29 variantes genéticas que afetam 10 genes envolvidos na resposta inflamatória. A análise do mRNA e da expressão proteica de alguns desses genes foi então realizada, traçando o perfil de três genes para estudos de metilação, a saber, SNCA, MIF e IFNGR1. O status de metilação do DNA modif icado com bissulfito foi analisado por PCR com marcação fluorescente, eletroforese capilar e validação com sequenciamento Sanger. Resultados: Há alterações no estado de metilação do promotor dos genes MIF e SNCA nos casos. Foi observada concordância entre expressão gênica e status de metilação em MIF na amostra geral, e também com a síntese de mRNA de SNCA, sem alterações apreciáveis na proteína, embora com diferenças de acordo com o sexo. Conclusão: Nosso estudo forneceu informações sobre o estado de metilação dos promotores SNCA e MIF e sua relação com a expressão gênica em fenótipos problemáticos de consumo de álcool. Estas duas proteínas são propostas como candidatas para estudos de modelagem.
Referencias
Proyecto PRADICAN, II Estudio Epidemiológico Andino sobre Consumo de Drogas en la Población Universitaria Informe Regional 2012, Lima, 2013. 106 p. URL: https://www.comunidadandina.org/StaticFiles/20132718338Informe_ Regional.pdf
A. Agrawal, M.T. Lynskey, Are there genetic influences on addiction: Evidence from family, adoption and twin studies, Addiction, 103(7), 1069–1081 (2008). URL: https://doi.org/10.1111/j.1360-0443.2008.02213.x
H. Zhang, A.I. Herman, H.R. Kranzler, R.F. Anton, H. Zhao, W. Zheng, et al., Array-based profiling of DNA methylation changes associated with alcohol dependence, Alcohol Clinical & Experimental Research, 37(s1), 108–115 (2013). Doi: https://doi.org/10.1111/j.1530-0277.2012.01928.x
T.B. Franklin, I.M. Mansuy, Epigenetic inheritance in mammals: Evidence for the impact of adverse environmental effects, Neurobiology of Disease, 39(1), 61–65 (2010). Doi: http://doi.org/10.1016/j.nbd.2009.11.012
X. Lin, G. Lian, S. Peng, Q. Zhao, Y. Xu, D. S. Ou-Yang, et al., Reversing epigenetic alterations caused by alcohol: A promising therapeutic direction for alcoholic liver disease, Alcohol Clinical & Experimental Research, 42(10), 1863–1873 (2018). Doi: https://doi.org/10.1111/acer.13863
A. Vagga, A. Meshram, L. Kanyal, K. Meshram, Gene expression regulation by epigenetic mechanism an emerging way in alcoholics, International Journal of Current Research and Review, 13(3), 43–49 (2021). Doi: http://doi. org/10.31782/IJCRR.2021.13302
S. Higuchi, S. Matsushita, T. Masaki, A. Yokoyama, M. Kimura, et al., Influence of genetic variations of ethanol-metabolizing enzymes on phenotypes of alcoholrelated disorders, Annals of the New York Academy of Sciences, 1025(1), 472–480 (2004). Doi: https://doi.org/10.1196/annals.1316.058
M. López-Jiménez, M. Vega-García, P. Mallorquín, Microarrays y Biochips de ADN, Genoma, Madrid, España, 2002.
E. Daudén, Farmacogenética II. Métodos moleculares de estudio, bioinformática y aspectos éticos, Actas Dermo-Sifiliograficas, 98(1), 3-13 (2007). Doi: https://doi.org/10.1016/S0001-7310(07)70002-9
X.T. Castro-Matiz, F.A. Aristizabal-Gutierrez, M. Rey-Buitrago, Determination of genetic polymorphism Taqia (Ankk1) Taqib (Drd2), -141c Ins/Del (Drd2) and 40 Bp Vntr (Slc6a3) in the Colombian population and evaluation of their associations with alcoholism, Journal of Substance Abuse & Alcoholism, 3(4), 1039 (2015). URL: https://www.jscimedcentral.com/public/assets/articles/ substanceabuse-3-1039.pdf
M. Rey, A. Gutiérrez, B. Schroeder, W. Usaquén, A. Carracedo, I. Bustos, et al., Allele frequencies for 13 STR’s from two Colombian populations: Bogotá and Boyacá, Forensic Science International, 136(1-3), 83–85 (2003). Doi: https:// doi.org/10.1016/S0379-0738(03)00221-4
B. Tabakoff , L. Saba, M. Printz, P. Flodman, C. Hodgkinson, D. Goldman, et al., Genetical genomic determinants of alcohol consumption in rats and humans, BMC Biology, 7, 70 (2009). Doi: https://doi.org/10.1186/1741-7007-7-70 1
D.F. Levey, H. Le-Niculescu, J. Frank, M. Ayalew, N. Jain, B. Kirlin, et al., Genetic risk prediction and neurobiological understanding of alcoholism, Translational Psychiatry, 4, e391 (2014). Doi: https://doi.org/10.1038/tp.2014.29
G. Egervari, C.A. Siciliano, E.L. Whiteley, D. Ron, Alcohol and the brain: From genes to circuits, Trends in Neurosciences, 44(12), 1004–1015 (2021). Doi: https://doi.org/10.1016/j.tins.2021.09.006 1
H. Sohma, E. Hashimoto, T. Shirasaka, R. Sunematsu, H. Ozawa, K.W. Boissl, et al., Quantitative reduction of type I adenylyl cyclase in human alcoholics, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1454(1), 11–18 (1999). Doi: https://doi.org/10.1016/s0925-4439(99)00018-6
M. Verma, S. Rogers, R.L. Divi, S.D. Schully, S. Nelson, J. Su, et al., Epigenetic research in cancer epidemiology: Trends, opportunities, and challenges, Cancer Epidemiology Biomarkers and Prevention, 23(2), 223–233 (2014). Doi: https:// doi.org/10.1158/1055-9965.EPI-13-0573
M. Girardot, R. Feil, D. Llères, Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications, Epigenomics, 5(6), 715–728 (2013). Doi: https://doi.org/10.2217/epi.13.66
T. Tatarinova, DNA Methylation - From Genomics to Technology, InTech, Janeza, 2012. 402 p. Doi: https://doi.org/10.5772/2159
S.D. Shukla, S. Zakhari, Epigenetics: A new frontier for alcohol research, Alcohol Research: Current Reviews, 35(1), 1–2 (2013). URL: https://arcr.niaaa.nih.gov/ media/896/download?inline
S.L. Hagerty, L.C. Bidwell, N. Harlaar, K.E. Hutchison, An exploratory association study of alcohol use disorder and DNA methylation, Alcohol Clinical & Experimental Research, 40(8), 1633–1640 (2016). Doi: https://doi. org/10.1111/acer.13138
C. Liu, R.E. Marioni, A.K. Hedman, L. Pfeiffer, P.C. Tsai, L.M. Reynolds, et al., A DNA methylation biomarker of alcohol consumption, Molecular Psychiatry, 23(2), 422–433 (2018). Doi: https://doi.org/10.1038/mp.2016.192
T. Hillemacher, C. Weinland, B. Lenz, T. Kraus, A. Heberlein, A. Glahn, et al., DNA methylation of the LEP gene is associated with craving during alcohol withdrawal, Psychoneuroendocrinology, 51, 371–377 (2015). Doi: https://doi. org/10.1016/j.psyneuen.2014.10.014
L. Zhou, X. Cheng, B.A. Connolly, M.J. Dickman, P.J. Hurd, D.P. Hornby, Zebularine: A novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases, Journal of Molecular Biology, 321(4), 591–599 (2002). Doi: https://doi.org/10.1016/S0022-2836(02)00676-9
`G. Szabo, J. Petrasek, S. Bala, Innate immunity and alcoholic liver disease, Digestive Diseases, 30(Suppl. 1), 55–60 (2012). Doi: https://doi.org/10.1159/000341126 25. M.B. Terry, L. Delgado-Cruzata, N. Vin-Raviv, H.C. Wu, R.M. Santella, DNA methylation in white blood cells, Epigenetics, 6(7), 828–837 (2011). Doi: http:// doi.org/10.4161/epi.6.7.16500
Y. Wan, K. McDaniel, N. Wu, S. Ramos-Lorenzo, T. Glaser, J. Venter, et al., Regulation of cellular senescence by miR-34a in alcoholic liver injury, The American Journal of Pathology, 187(12), 2788–2798 (2017). Doi: https://doi. org/10.1016/j.ajpath.2017.08.027
M. Rey-Buitrago, Variantes genéticas, expresión génica, metilación y búsqueda de blancos terapéuticos en vías de respuesta inflamatoria en una muestra de población universitaria colombiana con problemas de consumo de alcohol, Tesis doctoral, Facultad de Ciencias, Universidad Nacional de Colombia, 2022. 231 p. URL: https://repositorio.unal.edu.co/handle/unal/84041
M. Rey, F.A. Aristizabal, Inflammatory response genes differentially expressed in a Colombian university cohort with alcohol consumption problems, Genetics and Molecular Research, 22(3), GMR19159 (2023). Doi: https://doi. org/10.4238/gmr19159 29. F.N. Emamzadeh, Alpha-synuclein structure, functions, and interactions, Journal of Research in Medical Sciences, 21(1), 29 (2016). Doi: http://doi. org/10.4103/1735-1995.181989 30. P. Janeczek, J.M. Lewohl, The role of α-synuclein in the pathophysiology of alcoholism, Neurochemistry International, 63(3), 154–162 (2013). Doi: http://doi. org/10.1016/j.neuint.2013.06.007 31. P.J. Hamilton, E.J. Nestler, Epigenetics and addiction, Current Opinion in Neurobiology, 59, 128–136 (2019). Doi: https://doi.org/10.1016/j.conb.2019.05.005 32. S.G. Daniele, D. Béraud, C. Davenport, K. Cheng, H. Yin, K.A. Maguire-Zeiss, Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders, Science Signaling, 8(376), ra45 (2015). Doi: https://doi.org/10.1126/scisignal.2005965 33. P. Janeczek, R.K. MacKay, R.A. Lea, P.R. Dodd, J.M. Lewohl, Reduced expression of α-synuclein in alcoholic brain: influence of SNCA -Rep1 genotype, Addiction Biology, 19(3), 509–515 (2014). Doi: https://doi.org/10.1111/ j.1369-1600.2012.00495.x 34. Y.O. Nunez, R.D. Mayfield, Understanding alcoholism through microRNA signatures in brains of human alcoholics, Frontiers in Genetics, 3, 43 (2012). Doi: https://doi.org/10.3389/fgene.2012.00043 35. M.C. Petralia, E. Mazzon, K. Mangano, P. Fagone, R. Di Marco, L. Falzone, et al., Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders, Experimental and T herapeutic Medicine, 19(3), 1755–1762 (2020). Doi: https://doi.org/10.3892/ etm.2020.8410 36. G. Szabo, D. Catalano, G. Bellerose, P. Mandrekar, Interferon α and alcohol augment nuclear regulatory Factor‐κB activation in HepG2 cells, and interferon α increases pro‐inflammatory cytokine production, Alcohol Clinical & Experimental Research, 25(8), 1188–1197 (2001). Doi: https://doi. org/10.1111/j.1530-0277.2001.tb02335.x
C.C.Y. Wong, J. Mill, C. Fernandes, Drugs and addiction: An introduction to epigenetics, Addiction, 106(3), 480–489 (2011). Doi: https://doi.org/10.1111/ j.1360-0443.2010.03321.x 38. A.J. Robison, E.J. Nestler, Transcriptional and epigenetic mechanisms of addiction, Nature Reviews Neuroscience, 12(11), 623–637 (2011). Doi: https://doi. org/10.1038/nrn3111 39. J.A. Wasielewski, F.A. Holloway, Alcohol’s interactions with circadian rhythms - A focus on body temperature, Alcohol Research and Health, 25(2), 94–100 (2001). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707125/pdf/arcr25-2-94.pdf 40. G. Andrés, N. Ashour, M. Sánchez-Chapado, S. Ropero, J.C. Angulo, The study of DNA methylation in urological cancer: Present and future, Actas Urológicas Españolas, 37(6), 368–375 (2013). Doi: http://doi.org/10.1016/j. acuro.2013.03.001 41. M. Fiore, F. Giampiero, How alcohol drinking affects our genes: An epigenetic point of view, Biochemistry and Cell Biology, 97(4), 345–356 (2018). Doi: https://doi.org/10.1139/bcb-2018-0248 42. A. Campo-Arias, M. Villamil-Vargas, E. Herazo, Confiabilidad y dimensionalidad del AUDIT en estudiantes de medicina, Psicología desde el Caribe, 30(1), 21–35 (2013). URL: http://www.scielo.org.co/pdf/psdc/v30n1/v30n1a03 43. J.M. Ospina-Díaz, F.G. Manrique-Abril, N.E. Ariza, Confiabilidad y dimensionalidad del Cuestionario para Identificación de Trastornos Debidos al Consumo de Alcohol (AUDIT) en estudiantes universitarios de Tunja (Colombia), Salud Uninorte (Barranquilla), 28(2), 276–282 (2012). URL: http://www.scielo.org. co/pdf/sun/v28n2/v28n2a10.pdf 44. O. Scoppetta, A. Pérez-Gómez, C. Lanziano-Molano, Perfiles asociados al consumo de alcohol de adolescentes escolarizados mediante análisis de correspondencias múltiples, Acta Colombiana de Psicología, 14(1), 139–146 (2011). URL: http://scielo.org.co/pdf/acp/v14n1/v14n1a12.pdf 45. M. Silla-Stoel, B. Rosón-Hernández, Evaluación del consumo de alcohol y diagnóstico de patrón de consumo, Trastornos Adictivos, 11(3), 191–199 (2009). Doi: https://doi.org/10.1016/S1575-0973(09)72411-0
Canadian Centre on Substance Use and Addiction, Knowing your limits with alcohol: A Practical Guide to Assessing Your Drinking, CCSA.CCDUS, Canadá, 2019. 40 p. URL: https://www.ccsa.ca/sites/default/files/2019-08/CCSAKnowing-Your-Limits-with-Alcohol-Guide-2019-en_0.pdf
X. Shi, J. Li, C. Zhao, S. Lv, G. Xu, Methylation analysis of hMLH1 gene promoter by a bisulfite-sensitive single-strand conformation polymorphism–capillary electrophoresis method, Biomedical Chromatography, 20(8), 815–820 (2006). Doi: https://doi.org/10.1002/bmc.606
J.G. Herman, J.R. Graff, S. Myöhänen, B.D. Nelkin, S.B. Baylin, Methylationspecific PCR: A novel PCR assay for methylation status of CpG islands, Proceedings of the National Academy of Sciences, 93(18), 9821–9826 (1996). Doi: https://doi.org/10.1073/pnas.93.18.9821
F. Sanger, A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, Journal of Molecular Biology, 94(3), 441–448 (1975). Doi: https://doi.org/10.1016/0022-2836(75)90213-2
S.A. Miller, D.D. Dykes, H.F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Research, 16(3), 12151215 (1988). Doi: https://doi.org/10.1093/nar/16.3.1215
V.L. Boyd, K.I. Moody, A.E. Karger, K.J. Livak, G. Zon, J.W. Burns, Methylation-dependent fragment separation: Direct detection of DNA methylation by capillary electrophoresis of PCR products from bisulfite-converted genomic DNA, Analytical Biochemistry, 354(2), 266–273 (2006). Doi: https://doi. org/10.1016/j.ab.2006.04.009
M. Nakao, Epigenetics: Interaction of DNA methylation and chromatin, Gene, 278(1-2), 25–31 (2001). Doi: https://doi.org/10.1016/S03781119(01)00721-1
B. Hoogendoorn, S.L. Coleman, C.A Guy, S.K. Smith, M.C. O’Donovan, P.R. Buckland, Functional analysis of polymorphisms in the promoter regions of genes on 22q11, Human Mutation, 24(1), 35–42 (2004). Doi: https://doi. org/10.1002/humu.20061
D. Bönsch, B. Lenz, J. Kornhuber, S. Bleich, DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism, NeuroReport, 16(2), 167–170 (2005). URL: https://journals.lww.com/neuroreport/Abstract/2005/02080/ DNA_hypermethylation_of_the_alpha_synuclein.20.aspx
D. Bönsch, B. Lenz, R. Fiszer, H. Frieling, J. Kornhuber, S. Bleich, Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism, Journal of Neural Transmission, 113, 1299–1304 (2006). Doi: https://doi.org/10.1007/ s00702-005-0413-2
A. Jowaed, I. Schmitt, O. Kaut, U. Wüllner, Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains, The Journal of Neuroscience, 30(18), 6355–6359 (2010). Doi: https://doi.org/10.1523/ JNEUROSCI.6119-09.2010
T. Roger, X. Ding, A. Chanson, P. Renner, T. Calandra, Regulation of constitutive and microbial pathogen-induced humanmacrophage migration inhibitory factor(MIF) gene expression, European Journal of Immunology, 37(12), 35093521 (2007). Doi: https://doi.org/10.1002/eji.200737357
G. Suske, The Sp-family of transcription factors, Gene, 238(2), 291–300 (1999). Doi: https://doi.org/10.1016/S0378-1119(99)00357-1
B. Kantor, L. Tagliafierro, J. Gu, M. E. Zamora, E. Ilich, C. Grenier, et al., Downregulation of SNCA expression by targeted editing of DNA methylation: A potential strategy for precision therapy in PD, Molecular Therapy, 26(11), 26382649 (2018). Doi: https://doi.org/10.1016/j.ymthe.2018.08.019
J.M. Levenson, T.L. Roth, F.D. Lubin, C.A. Miller, I. Huang, P. Desai, et al., Evidence that DNA (Cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus, Journal of Biological Chemistry, 281(23), 15763–15773 (2006). Doi: https://doi.org/10.1074/jbc.M511767200
R. Zhang, Q. Miao, C. Wang, R. Zhao, W. Li, C.N. Haile, et al., Genome-wide DNA methylation analysis in alcohol dependence, Addiction Biology, 18(2), 392–403 (2013). Doi: https://doi.org/10.1111/adb.12037
Z.Z. Zhu, L. Hou, V. Bollati, L. Tarantini, B. Marinelli, L. Cantone, et al., Predictors of global methylation levels in blood DNA of healthy subjects: A combined analysis, International Journal of Epidemiology, 41(1), 126–139 (2012). Doi: https://doi.org/10.1093/ije/dyq154
S.L. Hagerty, L.C. Bidwell, N. Harlaar, K.E. Hutchison, An exploratory association study of alcohol use disorder and DNA methylation, Alcohol Clinical & Experimental Research, 40(8), 1633–1640 (2016). Doi: https://doi. org/10.1111/acer.13138
A.D. Rosen, K.D. Robertson, R.A. Hlady, C. Muench, J. Lee, R. Philibert, et al., DNA methylation age is accelerated in alcohol dependence, Translational Psychiatry, 8, 182 (2018). Doi: http://doi.org/10.1038/s41398-018-0233-4
H. Xu, F. Wang, H.R. Kranzler, J. Gelernter, H. Zhang, Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes, Scientific Reports, 7, 41816 (2017). Doi: https://doi. org/10.1038/srep41816
H.R. Elliott, K. Burrows, J.L. Min, T. Tillin, D. Mason, J. Wright, et al., Characterisation of ethnic differences in DNA methylation between UK-resident South Asians and Europeans, Clinical Epigenetics, 14, 130 (2022). Doi: https:// doi.org/10.1186/s13148-022-01351-2 67. M. Rey, F.A. Aristizabal, Computational analysis of potential therapeutic targets in the inflammatory pathway for alcoholism, International Journal of Pharmaceutical Research and Applications, 8(6), 1960–1975 (2023). Doi: https://doi. org/10.35629/7781-080619601975
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13