Publicado
Preferential solvation of triclocarban in N-methyl-2-pyrrolidone + water cosolvent mixtures according to the Inverse Kirkwood-Buff Integrals (IKBI) method and correlation of solubility by means of some mathematical models
Solvatación preferencial de triclocarbán en mezclas de cosolventes de N-metil-2-pirrolidona + agua según el método de la integrales inversas de Kirkwood-Buff y correlación de solubilidad mediante algunos modelos matemáticos
Solvatação preferencial de triclocarban em misturas de N-metil- 2-pirrolidona + água cosolvente de acordo com o método da integrais inversas da Kirkwood-Buff e correlação de solubilidade por meio de alguns modelos matemáticos
DOI:
https://doi.org/10.15446/rcciquifa.v53n1.111422Palabras clave:
Triclocarban, inverse Kirkwood-Buff integrals, IKBI, preferential solvation, mathematical assessment (en)Triclocarbán, integrales inversas de Kirkwood-Buff, IKBI, solvatación preferencial, análisis matemático (es)
Triclocarban, integrais inversas de Kirkwood-Buff, IKBI, olvatação preferencial, avaliação matemática (pt)
Descargas
Introduction: Solubility is an important thermodynamic property due to its role in product development, as well as the understanding of biological processes. This research aims to evaluate the preferential solvation parameter (δx1,3) of the triclocarban (TCC) solubility in N-methyl-2-pyrrolidone + water cosolvent mixtures and to assess some correlational and predictive mathematical models of concern to the pharmaceutical industry. Calculations: δx1,3 was determined from experimental data following the Inverse Kirkwood-Buff Integrals model (IKBI). The mathematical models were developed using Python, and functions for each model were fitted by non-linear least squares using the libraries scipy.optimize. curve_fit, and sklearn.model_selection. Results: According to the δx1,3 heat, TCC has preferential solvation by water in water-rich mixtures, and preferential solvation by N-methyl-2-pyrrolidone in intermediate and N-methyl-2-pyrrolidone-rich mixtures. The models Yalkowsky–Roseman–van’t Hoff, Wilson, Modified Wilson, NRTL, van’t Hoff, Apelblat, and Buchowski–Ksiazaczak 𝜆ℎ were assessed, finding good correlations with all. Conclusions: The TCC solubility increase in N-methyl 2-pyrrolidone + water cosolvent mixtures with increasing N-methyl-2-pyrrolidone (NMP) concentration may be related to the rise in the local mole fraction (x1,3 L) of NMP in the TCC solvation sphere. Regarding the mathematical models, the Yalkowsky–Roseman–van’t Hoff model can be considered the most versatile due to its capability estimate solubility data as a function of both temperature and cosolvent composition, given a limited range of experimental data.
Introducción: La solubilidad es una de las propiedades termodinámicas de mayor importancia debido a su relación en desarrollo de productos como en la elucidación de procesos biológicos. El objetivo del presente trabajo de investigación es determinar y evaluar el parámetro de solvatación preferencial (δx1,3) de la solubilidad del triclocarbán (TCC) en mezclas cosolventes N-metil-2-pirrolidona + agua, además de desafiar algunos modelos matemáticos de carácter correlacional y predictivo de interés para la industria farmacéutica. Cálculos: A partir de datos experimentales se determinó δx1,3 de acuerdo con el modelo de integrales inversas de Kirkwood Buff. Los modelos matemáticos fueron desarrollados con Python y las funciones de cada modelo se ajustaron mediante mínimos cuadrados no lineales utilizando las bibliotecas scipy.optimize.curve_fit y sklearn.model_selection. Resultados: De acuerdo con los calores del δx1,3 el TCC se solvata preferencialmente por el agua en mezclas ricas en agua y en mezclas intermedias y ricas en N-methyl-2-pyrrolidone es solvatado preferencialmente por la N-metil-2-pirrolidona. Se evaluaron los modelos de Yalkowsky–Roseman–van’t Hoff, Wilson, Wilson Modificado, NRTL, van’t Hoff, Apelblat y Buchowski–Ksiazaczak 𝜆ℎ, obteniendo buenas correlaciones con todos ellos. Conclusiones: El incremento de la solubilidad del TCC en mezclas cosolventes N-metil-2-pirrolidona + agua, al incrementar la concentración de N-metil-2-pirrolidona (NMP) puede estar relacionada con el incremento de la fracción molar local (x1,3 L) de NMP en la esfera de solvatación del TCC, en cuanto a los modelos matemáticos el modelo de Yalkowsky–Roseman–van’t Hoff, puede definirse como el modelo más versátil al tener la capacidad de calcular datos de solubilidad en función tanto de la temperatura como de la composición cosolventes con un excelente grado de precisión, el cual fue desarrollado a partir de un número limitado de datos experimentales.
Introdução: A solubilidade é uma importante propriedade termodinâmica devido ao seu papel no desenvolvimento de produtos, bem como na compreensão de processos biológicos. Esta pesquisa tem como objetivo avaliar o parâmetro de solvatação preferencial (δx1,3) da solubilidade do triclocarban (TCC) em misturas de co-solventes N-metil-2-pirrolidona + água e avaliar alguns modelos matemáticos correlacionais e preditivos de interesse para a indústria farmacêutica. Cálculos: δx1,3 foi determinado a partir de dados experimentais seguindo o modelo da integrais inversas da Kirkwood-Buff. Os modelos matemáticos foram desenvolvidos em Python, e as funções de cada modelo foram ajustadas por mínimos quadrados não lineares usando as bibliotecas scipy.optimize.curve_fit e sklearn.model_selection. Resultados: De acordo com o calor δx1,3, o TCC possui solvatação preferencial por água em misturas ricas em água, e solvatação preferencial por N-metil-2-pirrolidona em misturas intermediárias e ricas em N-metil-2-pirrolidona. Os modelos Yalkowsky– Roseman–van’t Hoff, Wilson, Wilson modificado, NRTL, van’t Hoff, Apelblat e Buchowski–Ksiazaczak 𝜆ℎ foram avaliados, encontrando boas correlações com todos. Conclusões: O aumento da solubilidade do TCC em misturas de cosolventes de N-metil-2-pirrolidona + água com o aumento da concentração de N-metil-2 pirrolidona (NMP) pode estar relacionado ao aumento na fração molar local (x1,3 L) de NMP em a esfera de solvatação do TCC. Em relação aos modelos matemáticos, o modelo Yalkowsky–Roseman–van’t Hoff pode ser considerado o mais versátil devido à sua capacidade de estimar dados de solubilidade em função da temperatura e da composição do cosolvente, dada uma gama limitada de dados experimentais.
Referencias
D. Zhang, S. Lu, A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment, Science of The Total Environment, 872, 162114 (2023). Doi: https://doi.org/10.1016/j.scitotenv.2023.162114
R.U. Halden, On the need and speed of regulating triclosan and triclocarban in the United States, Environmental Sciences & Technology, 48(7), 3603–3611 (2014). Doi: https://doi.org/10.1021/es500495p
H. Barrett, J. Sun, Y. Gong, P. Yang, C. Hao, J. Verreault, Y. Zhang, H. Peng, Triclosan is the predominant antibacterial compound in Ontario sewage sludge, Environmental Sciences & Technology, 56(21), 14923–14936 (2022). Doi: https://doi.org/10.1021/acs.est.2c00406
D. Kneis, T.U. Berendonk, S.K. Forslund, S. Hess, Antibiotic resistance genes in river biofilms: A metagenomic approach toward the identification of sources and candidate hosts, Environmental Sciences & Technology, 56(21), 14913–14922 (2022). Doi: https://doi.org/10.1021/acs.est.2c00370
S. Lu, N. Wang, S. Ma, X. Hu, L. Kang, Y. Yu, Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks, Environmental Pollution, 246, 257–263 (2019). Doi: https://doi.org/10.1016/j.envpol.2018.12.002
E.M. Hartmann, R. Hickey, T. Hsu, C.M. Betancourt-Román, J. Chen, R. Schwager, J. Kline, G.Z. Brown, R.U. Halden, C. Huttenhower, J.L. Green, Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome, Environmental Sciences & Technology, 50(18), 9807–9815 (2016). Doi: https://doi.org/10.1021/acs.est.6b00262
A.N. Martin, P. Bustamante, A.H.C. Chun, Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences, 4th ed., Lippincott Williams & Wilkins, Philadelphia, 1993.
A.T. Florence, D. Attwood, Physicochemical Principles of Pharmacy: In Manufacture, Formulation and Clinical Use, 6th ed., Pharmaceutical Press, London, 2016.
E. Hart, D. Grover, H. Zettl, V. Koshevarova, S. Zhang, C. Dai, W.E. Acree Jr., I.A. Sedov, M.A. Stolov, M.H. Abraham, Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase, Journal of Molecular Liquids, 209, 738–744 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.05.064
J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro- Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, Revista Colombiana de Ciencias Químico- Farmacéuticas, 49(1), 234–255 (2020). Doi: https://doi.org/10.15446/rcciquifa.v49n1.87038
C.P. Ortíz, R.E. Cardenas-Torres, D.I. Caviedes-Rubio, S.D.J. Polania- Orozco, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfanilamide in different cosolvent mixtures, Physics and Chemistry of Liquids, 60(1), 9–24 (2022). Doi: https://doi.org/10.1080/00319104.2021.1888382
D.R. Delgado, A. Holguin, F. Martínez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19(1), 79–92 (2012). URL: http://www.scielo.org.co/scielo.phpscript=sci_arttext&pid=S0121-40042012000100009
D.R. Delgado, A. Sosnik, F. Martínez, Transfer thermodynamics of triclosan from water to organic solvents with different hydrogen bonding capability, Latin American Journal of Pharmacy, 30(3), 459–466 (2011). URL: http://www.latamjpharm.org/resumenes/30/3/LAJOP_30_3_1_7.pdf
A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K, Physics and Chemistry of Liquids, 57(1), 55–56 (2019). Doi: https://doi.org/10.1080/00319104.2017.1416613
D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, Journal of Molecular Liquids, 271, 522–529 (2018). Doi: https://doi.org/10.1016/j.molliq.2018.09.026
A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures, Química Nova, 35(2), 280–285 (2012). Doi: https://doi.org/10.1590/S0100-40422012000200009
J.J. Agredo-Collazos, C.P. Ortiz, N.E. Cerquera, R.E. Cardenas-Torres, D.R. Delgado, M.Á. Peña, F. Martínez, Equilibrium solubility of triclocarban in (cyclohexane + 1,4-dioxane) mixtures: Determination, correlation, thermodynamics and preferential solvation, Journal of Solution Chemistry, 51(12), 1603–1625 (2022). Doi: https://doi.org/10.1007/S10953-022-01209-4
A.M. Cruz-González, M.S. Vargas-Santana, S.d.J. Polania-Orozco, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, A. Jouyban, W.E. Acree Jr., Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures, Journal of Molecular Liquids, 325, 115222 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.115222
M.A. Parra, N.E. Cerquera, C.P. Ortiz, R.E. Cárdenas-Torres, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility of ciprofloxacin in different solvents at several temperatures: Measurement, correlation, thermodynamics and Hansen solubility parameters, Journal of the Taiwan Institute of Chemical Engineers, 150, 105028 (2023). Doi: https://doi.org/10.1016/j.jtice.2023.105028
C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera, D.R. Delgado, Thermodynamic analysis of the solubility of propylparaben in acetonitrile––water cosolvent mixtures, Sustainability, 15(6), 4795 (2023). Doi: https://doi.org/10.3390/su15064795
Y. Marcus, Preferential solvation in mixed solvents, in: P.E. Smith, E. Matteoli, J.P. O’Connell (editors), Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics, CRC Press, Taylor & Francis Group, Boca Raton (FL), 2013.
Y. Marcus, On the preferential solvation of drugs and PAHs in binary solvent mixtures, Journal of Molecular Liquids, 140(1-3), 61–67 (2008). Doi: https://doi.org/10.1016/j.molliq.2008.01.005
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus, Solubility and preferential solvation of indomethacin in 1,4-dioxane+water solvent mixtures, Fluid Phase Equilibria, 299(2), 259–265 (2010). Doi: https://doi.org/10.1016/j.fluid.2010.09.027
A.R. Holguín, D.R. Delgado, F. Martínez, Y. Marcus, Solution thermodynamics and preferential solvation of meloxicam in propylene glycol +water mixtures, Journal of Solution Chemistry, 40(12), 1987–1999 (2011). Doi: https://doi.org/10.1007/s10953-011-9769-0
D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus, Solubility and preferential solvation of meloxicam in ethanol + water solvent mixtures, Fluid Phase Equilibria, 305(1), 88–95 (2011). Doi: https://doi.org/10.1016/j.fluid.2011.03.012
C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera, D.R. Delgado, Numerical analysis of sulfamerazine solubility in acetonitrile + 1-propanol cosolvent mixtures at different temperatures, Sustainability, 15(8), 6596 (2023). Doi: https://doi.org/10.3390/su15086596
D.R. Delgado, R.E. Cardenas-Torres, C.P. Ortiz, Mathematical modeling of the aqueous solubility of bioactive substances of environmental interest, Proceedings - 2022 8th International Engineering, Sciences and Technology Conference, IESTEC 2022, Panama, 2022. pp. 498–503. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10040875
D.M. Cristancho, D.R. Delgado, F. Martínez, Meloxicam solubility in ethanol+water mixtures according to the extended Hildebrand solubility approach, Journal of Solution Chemistry, 42(8), 1706–1716 (2013). Doi: https://doi.org/10.1007/s10953-013-0058-y
A. Torres-Cardozo, N.E. Cerquera, C.P. Ortiz, J. Osorio-Gallego, R.E. Cardenas- Torres, F. Angarita-Reina, F. Martinez, D.R. Delgado, Thermodynamic analysis of the solubility of progesterone in 1-octanol + ethanol cosolvent mixtures at different temperatures, Alexandria Engineering Journal, 64, 219–235 (2023). Doi: https://doi.org/10.1016/j.aej.2022.08.035
D.I. Caviedes-Rubio, C.P. Ortiz, F. Martinez, D.R. Delgado, Thermodynamic assessment of triclocarban dissolution process in N-methyl-2-pyrrolidone + water cosolvent mixtures, Molecules, 28(20), 7216 (2023). Doi: https://doi.org/10.3390/molecules28207216
Y. Marcus, Preferential solvation of drugs in binary solvent mixtures, Pharmaceutical Analytica Acta, 8, 1000537 (2017). Doi: https://doi.org/10.4172/2153-2435.1000537
Y. Marcus, Preferential solvation in mixed solvents. 15. Mixtures of acetonitrile with organic solvents, Journal of Chemical Thermodynamics, 135, 55–59 (2019). Doi: https://doi.org/10.1016/j.jct.2019.03.019
Y. Marcus, The properties of solvents, John Wiley & Sons Ltd, New York, 1999.
S. Nozohouri, A. Shayanfar, Z.J. Cárdenas, F. Martinez, A. Jouyban, Solubility of celecoxib in N-methyl-2-pyrrolidone+water mixtures at various temperatures: Experimental data and thermodynamic analysis, Korean Journal of Chemical Engineering, 34(5), 1435–1443 (2017). Doi: https://doi.org/10.1007/S11814-017-0028-Y
Y. Marcus, Solvent mixtures: Properties and selective solvation, Marcel Dekker, Inc, New York, 2002.
D.I. Caviedes-Rubio, R.G. Sotomayor-Pino, D.R. Delgado, Solvatación preferencial de la naringina en mezclas cosolventes etanol + agua mediante el método de las integrales inversas de Kirkwood-Buff, Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(2), 220–235 (2015). URL: https://revistas.unal.edu.co/index.php/rccquifa/article/view/56295
D.R. Delgado, M.Á. Peña, F. Martínez, Preferential solvation of acetaminophen in ethanol + water solvent mixtures according to the inverse Kirkwood-Buff integrals method, Revista Colombiana de Ciencias Químico-Farmacéuticas, 42(2), 298-314 (2013). URL: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74182013000200009
R.G. Sotomayor, D.R. Delgado, F. Martínez, Preferential solvation of naproxen and piroxicam in ethanol + water mixtures, Bulgarian Chemical Communications, 47(2), 571–577 (2015). URL: http://www.bcc.bas.bg/BCC_Volumes/Volume_47_Number_2_2015/BCC-47-2-3556-Sotomayor-571-577.pdf
D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, Journal of Chemical Thermodynamics, 97, 264– 276 (2016). Doi: https://doi.org/10.1016/j.jct.2016.02.002
D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures, Journal of Solution Chemistry, 44(2), 360–377 (2015). Doi: https://doi.org/10.1007/s10953-015-0317-1
M.J. Kamlet, R.W. Taft, The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities, Journal of the American Chemical Society, 98(2), 377–383 (1976). Doi: https://doi.org/10.1021/ja00418a009
D.R. Delgado, M.Á. Peña, F. Martínez, Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K, Physics and Chemistry of Liquids, 57(3), 388–400 (2019). Doi: https://doi.org/10.1080/00319104.2018 .1476976
D.R. Delgado, R.E. Cardenas-Torres, C.P. Ortiz, Mathematical modeling of the aqueous solubility of bioactive substances of environmental interest, in: Proceedings - 2022 8th International Engineering, Sciences and Technology Conference, IESTEC 2022, Panama, 2022. pp. 498–503. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10040875
S.H. Yalkowsky, Solubility and solubilization in aqueous media, American Chemical Society, New York, 1999.
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Performance of the Jouyban-Acree and Yalkowsky-Roseman models for estimating the solubility of indomethacin in ethanol+ water mixtures, Revista de la Academia Colombiana de Ciencias, 35(136), 329–336 (2011). URL: https://repositorio.accefyn.org.co/bitstream/001/2763/1/329-336.pdf
J.M. Prausnitz, Termodinámica Molecular de los Equilibrios de Fases, 3a ed., Prentice Hall, Madrid, 2000.
M. Barzegar-Jalali, E. Rahimpour, W.E. Acree, A. Jouyban, A global version of modified Wilson model for solubility prediction of drugs in methanol + water mixtures, Journal of Molecular Liquids, 269, 609–618 (2018). Doi: https://doi.org/10.1016/j.molliq.2018.08.033
A. Adjei, J. Newburger, A. Martin, Extended Hildebrand approach: Solubility of caffeine in dioxane–water mixtures, Journal of Pharmaceutical Sciences, 69(6), 659–661 (1980). Doi: https://doi.org/10.1002/jps.2600690613
J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, A. Yurquina, F. Martínez, Extended Hildebrand Solubility Approach applied to Nimodipine in PEG 400 + ethanol mixtures, Revista Colombiana de Ciencias Químico-Farmacéuticas, 42(1), 103–121 (2013). URL: http://scielo.org.co/pdf/rccqf/v42n1/v42n1a07.pdf
A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki, A. Jouyban, Measurement and correlation of deferiprone solubility: Investigation of solubility parameter and application of van’t Hoff equation and Jouyban–Acree model, Journal of Molecular Liquids, 215, 339–344 (2016). Doi: https://doi.org/10.1016/j.molliq.2015.12.005
S.V. Blokhina, M.V. Ol’khovich, A.V. Sharapova, I.B. Levshin, G.L. Perlovich, Thermodynamic insights to solubility and lipophilicity of new bioactive hybrids triazole with thiazolopyrimidines, Journal of Molecular Liquids, 324, 114662 (2020). Doi: https://doi.org/10.1016/j.molliq.2020.114662
T. Jeliński, N. Bugalska, K. Koszucka, M. Przybyłek, P. Cysewski, Solubility of sulfanilamide in binary solvents containing water: Measurements and prediction using Buchowski-Ksiazczak solubility model, Journal of Molecular Liquids, 319, 114342 (2020). Doi: https://doi.org/10.1016/j.molliq.2020.114342
H. Buchowski, A. Ksiazczak, S. Pietrzyk, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, Journal of Physical Chemistry, 84(9), 975–979 (1980). Doi: https://doi.org/10.1021/j100446a008
P. Cysewski, T. Jeliński, D. Procek, A. Dratwa, Solubility of sulfanilamide and sulfacetamide in neat solvents: Measurements and interpretation using theoretical predictive models, first principle approach and artificial neural networks, Fluid Phase Equilibria, 529, 112883 (2021). Doi: https://doi.org/10.1016/j.fluid.2020.112883
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods, 17, 261–272 (2020). Doi: https://doi.org/10.1038/s41592-019-0686-2
L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, G. Varoquaux, API Design for Machine Learning Software: Experiences from the Scikit-Learn Project, New York, 2013. Doi: https://doi.org/10.48550/arXiv.1309.0238
F. Pedregosa, V. Michel, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, J. Vanderplas, D. Cournapeau, F. Pedregosa, G. Varoquaux, A. Gramfort, B. Thirion, O. Grisel, V. Dubourg, A. Passos, M. Brucher, M. Perrot, É. Duchesnay, Scikitlearn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830 (2011). URL: https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13