Publicado
A descrição teórica da detecção eletroanalítica do ledol em méis, assistida pelo compósito do polímero condutor com o oxihidróxido de cobalto
The theoretical description for ledol electroanalytical detection in honeys, assisted by conducting polymer/cobalt oxyhydroxide composite
DOI:
https://doi.org/10.15446/rcciquifa.v53n1.112979Palabras clave:
mel, ledol, oxihidróxido de cobalto, polímero condutor, sensor eletroquímico, estado estacionário estável (pt)honey, ledol, cobalt oxyhydroxide, conductive polymer, electrochemical sensor, stable steady state (en)
miel, ledol, oxihidróxido de cobalto, polímero condutor, sensor eletroquímico, estado estacionário estável (es)
Descargas
Introdução: Pela primeira vez se avalia teoricamente a possibilidade da detecção eletroanalítica anódica do ledol – principal toxina dos néctares e méis de algumas f lores tóxicas – pelo eléctrodo, modificado pelo compósito do polímero condutor com oxihidróxido de cobalto. Metodologia: A eletrooxidação do ledol dar-se-á pelo anel de ciclopropano, seguida pela oxidação do grupo alcoólico secundário em cetona. Resultados e discussão: A análise do modelo correspondente mediante a teoria de estabilidade linear e análise de bifurcações confirma que o oxihidróxido de cobalto em compósito com o polímero condutor pode servir de modificador de ânodo eficaz para a determinação do ledol em méis, néctares e outras fontes naturais. Como o ledol é pouco ionizado, o comportamento oscilatório causar-se-á apenas pelos efeitos da etapa eletroquímica na dupla camada elétrica (DCE). Conclusões: oxihidróxido de cobalto pode ser usado para a detecção de ledol para a verificação de segurança de méis.
** Process exited - Return Code: 0 **
Press Enter to exit terminal
Introduction: For the first time, the possibility of anodic electroanalytical detection of ledol – the main toxin in the nectars and honeys of some toxic flowers – by the electrode, modified by the conductive polymer composite with cobalt oxyhydroxide is evaluated. Methodology: The electrooxidation of ledol will be realized via cyclopropane ring, followed by the oxidation of the secondary alcoholic group to ketone. Results and discussion: Analysis of the corresponding model using linear stability theory and bifurcation analysis confirms that cobalt oxyhydroxide in composite with conductive polymer can serve as an effective anode modifier for determining ledol in honeys, nectars and other sources natural. As ledol is poorly ionized, the oscillatory behavior will only be caused by the effects of the electrochemical stage in the double electric layer (DEL). Conclusions: Cobalt oxyhydroxide can be used for detection of ledol for safety verification of honeys.
Referencias
M.J. Walker, S. Cowen, K. Gray, P. Hancock, D.T. Burns, Honey authenticity: the opacity of analytical reports—part 2, forensic evaluative reporting as a potential solution, NPJ Science of Food, 6, 12 (2022). Doi: https://doi.org/10.1038/ s41538-022-00127-5
E.J. de Jongh, S.L. Harper, S.S. Yamamoto, C.J. Wright, C.W. Wilkinson, S. Ghosh, S.J.G. Otto, One Health, One Hive: A scoping review of honey bees, climate change, pollutants, and antimicrobial resistance, PLoS One, 17(2), e0242393 (2022). Doi: https://doi.org/10.1371/journal.pone.0242393
A. Afshari, M. Ram, S. Mohamadi, Quality evaluation of Iranian honey collected from Khorasan Province, Iran, International Journal of Food Science, 2022, 3827742 (2022). Doi: https://doi.org/10.1155/2022/3827742
A. Nunes, C. Schmitz, T. Gerber, D. Nunes-Araújo, S. Moura, M. Maraschin, Typification and adulteration analysis of Brazilian honeys: a systematic reviewfrom 2010 to 2020, Research, Society and Development, 11(2), e47611226026 (2022). Doi: https://doi.org/10.33448/rsd-v11i2.26026
S. Ullah, S.U. Khan, T.A. Saleh, S. Fahad, Mad honey: uses, intoxicating/poisoning effects, diagnosis, and treatment, RSC Advances, 8(33), 18635-18646 (2018). Doi: https://doi.org/10.1039/C8RA01924J
E. Dilber, M. Kalyoncu, N. Yariş, A. Ökten, A case of mad honey poison-. ing presenting with convulsion: intoxication instead of alternative therapy, Turkish Journal of Medical Sciences, 32(4), 361-362 (2002). URL: https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=4439&context=medical
H. Ozhan, R. Akdemir, M. Yazici, H. Gündüz, S. Duran, C. Uyan, Cardiac emergencies caused by honey ingestion: a single centre experience, Emergency Medicine Journal, 21(6), 742-744 (2004). Doi: https://doi.org/10.1136/ emj.2003.009324
D.P. Aykas, Determination of possible adulteration and quality assessment in commercial honey, Foods, 12(3), 523 (2023). Doi: https://doi.org/10.3390/ foods12030523
A. Jesionek, L. Poblocka-Olech, B. Zabiegala, A. Bucinski, M. Krauze-Baranowska, M. Luczkiewicz, Validated HPTLC method for determination of ledol and alloaromadendrene in the essential oil fractions of Rhododendron tomentosum plants and in vitro cultures and bioautography for their activity screening, Journal of Chromatography B, 1086, 63-72 (2018). Doi: https://doi. org/10.1016/j.jchromb.2018.04.006
A.S. Tsagkaris, G.A. Koulis, G.P. Danezis, I. Martakos, M. Dasenaki, C.A. Georgiou, N.S. Thomaidis, Honey authenticity: Analytical techniques, state of the art and challenges, RSC Advances, 11(19), 11273-11294 (2021). Doi: https://doi. org/10.1039/D1RA00069A
R. Brodschneider, Honey bee genetic improvement, Bee World, 100(1), 1 (2023). Doi: https://doi.org/10.1080/0005772X.2023.2178766
S.I. Abdelwahab, A.B. Abdul, M.M. Elhassan, S. Mohan, M.Y. Ibrahim, A.A. Mariod, N.A. AlHaj, R. Abdullah, GC/MS determination of bioactive components and antibacterial properties of Goniothalamus umbrosus extracts, African Journal of Biotechnology, 8(14), 3336-3340 (2009). Doi: https://doi. org/10.5897/AJB09.356 13. A. Stadnik, E.M. Caldas,
A. Galli, F.J. Anaissi, Eletrodo modificado com [CoO(OH)] coloidal aplicado na detecção de ácido oxálico, Orbital: The Electronic Journal of Chemistry, 7(2), 122-128 (2015). Doi: http://dx.doi. org/10.17807/orbital.v7i2.572
J.S. Bonini, F.Q. Mariani, E.G. de Castro, A. Galli, R. Marangoni, F.J. Anaissi, Partículas de CoO(OH) dispersas em pasta de carbono aplicado na eletrooxidação de compostos fenólicos, Orbital: The Electronic Journal of Chemistry, 7(4), 318-326 (2015). Doi: http://dx.doi.org/10.17807/orbital.v7i4.780
S. Tursynbolat, Y. Bakytkarim, J. Huang, L. Wang, Highly sensitive simultaneous electrochemical determination of myricetin and rutin via solid phase extraction on a ternary Pt@r-GO@MWCNTs nanocomposite, Journal of Pharmaceutical Analysis, 9(5), 358-366 (2019). Doi: https://doi.org/10.1016/j. jpha.2019.03.009
S. Sadki, P. Schottland, N. Brodie, G. Saboraud, The mechanisms of pyrrole electropolymerization, Chemical Society Reviews, 29(5), 283-293 (2000). Doi: https://doi.org/10.1039/A807124A
F. Ağın, Electrochemical determination of amoxicillin on a poly (acridine orange) modified glassy carbon electrode, Analytical Letters, 49(9), 1366-1378 (2016). Doi: https://doi.org/10.1080/00032719.2015.1101602
T.D. Martins, M.L. Pacheco, R.E. Boto, P. Almeida, J.P.S. Farinha, L.V. Reis, Synthesis, characterization and protein-association of dicyanomethylene squaraine dyes, Dyes and Pigments, 147, 120-129 (2017). Doi: https://doi.org/10.1016/j. dyepig.2017.07.070
S. Sreejith, P. Carol, P. Chithra, A. Ajayaghosh, Squaraine dyes. A mine of molecular materials, Journal of Materials Chemistry, 18(3), 264-274 (2008). Doi: https://doi.org/10.1039/B707734C
D. Lynch, Pyrrolyl-squaraines––Fifty golden years, Metals, 5(3), 1349-1370 (2015). Doi: https://doi.org/10.3390/met5031349
M.S. Ba-Shammakh, Electropolymerization of Pyrrole on Mild Steel for Corrosion Protection, Tese de mestrado, King Fahd University of Petroleum and Minerals, Dharan, Saudi Arabia, 2002.
I. Das, N.R. Agrawal, S.A. Ansari, S.K. Gupta, Pattern formation and oscillatory electropolymerization of thiophene, Indian Journal of Chemistry, 47A(12), 17981803 (2008). URL: https://nopr.niscair.res.in/bitstream/123456789/2565/1/ IJCA%2047A(12)%201798-1803.pdf
K. Aoki, I. Mukoyama, J. Chen, Competition between polymerization and dissolution of poly(3-methylthiophene) films, Russian Journal of Electrochemistry, 40(3), 280-285 (2004). Doi: https://doi.org/10.1023/B:RUEL.0000019665.59805.4c
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono- and mixed surfactants, Journal of Physical Chemistry, 114(40), 1288812896 (2010). Doi: https://doi.org/10.1021/jp105183q
M. Bazzaoui, E.A. Bazzaoui, L. Martins, J.I. Martins, Electropolymerization of pyrrole on zinc-lead-silver alloys’ electrodes in neutral and acid organic media, Synthetic Metals, 130(1), 73-83 (2002). Doi: https://doi.org/10.1016/S03796779(02)00101-7
I. Das, N. Goel, S.K. Gupta, N.R. Agrawal, Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants, Journal of Electroanalytical Chemistry, 670, 1-10 (2012). Doi: https://doi.org/10.1016/j.jelechem.2012.01.023
V.V. Tkach, M.V. Kushnir, S.C.d. Oliveira, I.M. Shevchenko, V.M. Odyntsova, V.M. Omelyanchik, et al., Theoretical description for anti-COVID-19 drug molnupiravir electrochemical determination over the poly(1,2,4-triazole)-cosquaraine dye composite with Cobalt (III) oxyhydroxide, Biointerface Research in Applied Chemistry, 13(1), 74 (2023). Doi: https://doi.org/10.33263/ BRIAC131.074
V.V. Tkach, M.M. Kucher, N. Slyvka, L. Vovk, M. Sokolenko, The modeling for anti-Covid-19 drug molnupiravir electrochemical sensing on C3 N4 , Biointerface Research in Applied Chemistry, 13(5), 446 (2023). Doi: https://doi. org/10.33263/BRIAC135.446
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13