Publicado
Preparation and characterization of copper nanoparticles of Schisandra chinensis and evaluation of its antiproliferative activity
preparación y caracterización de nanopartículas de cobre de Schisandra chinensis y evaluación de su actividad antiproliferativa
Preparação e caracterização de nanopartículas de cobre de Schisandra chinensis e avaliação de sua atividade antiproliferativa
DOI:
https://doi.org/10.15446/rcciquifa.v53n1.112982Palabras clave:
Schisandra chinensis, material science, nanotechnology, green synthesis, copper nanoparticles, antiproliferative effects, carcinoma (en)Schisandra chinensis, ciencia material, nanotecnología, síntesis verde, nanopartículas de cobre, efectos antiproliferativos, carcinoma (es)
Schisandra chinensis, ciência dos materiais, nanotecnologia, síntese verde, nanopartículas de cobre, efeitos antiproliferativos, carcinoma (pt)
Descargas
Introduction: Schisandra chinensis is a plant species whose fruits have been well known for its multiple pharmacological effects. In the current work, aqueous extract of S. chinensis fruits is used to produce Copper nanoparticles (CuNPs) through green-synthesis method. Physical and biological essays characterized the nanoparticles obtained. Aim: To produce Copper nanoparticles through a greensynthesis method using the aqueous extract of S. chinensis fruits and to characterize this material using spectroscopic methods, including UV-Vis, FTIR (Fourier Transform Infrared Spectra), X-ray diffraction, and SEM (Scanning electron microscopy). Subsequently, the nanoparticulate material is evaluated against three tumor cell lines: A549 human lung cancer cell line (CRM-CCL-185TM), HT29 human colorectal adenocarcinoma cell line (ATCC® HTB-38TM) and MCF7 breast cancer cell line (ATCC® HTB-22TM). Results: Through a green synthesis method, Copper nanoparticles were synthesized from aqueous extract of S. chinensis fruits, demonstrating a spherical morphology with a size close to 26 nanometers by means of spectral methods. Furthermore, results suggest that the S. chinensis reduced CuNPs were able to induce mainly early apoptotic cell death in cancer cells in a concentration-dependent manner. Conclusions: The results proved that S. chinensis fruit aqueous extract could be applied for a greener synthesis of copper nanoparticles with potential anti-proliferative effect.
Introducción: Schisandra chinensis es una especie vegetal cuyos frutos han sido muy conocidos por sus múltiples efectos farmacológicos. En el trabajo actual, se utiliza extracto acuoso de frutos de S. chinensis para producir nanopartículas de cobre (CuNP) mediante el método de síntesis verde. Ensayos físicos y biológicos caracterizaron las nanopartículas obtenidas. Objetivo: producir nanopartículas de cobre mediante un método de síntesis verde utilizando el extracto acuoso de frutos de S. chinensis y caracterizar este material mediante métodos espectroscópicos, incluidos UV-Vis, FTIR (espectros infrarrojos por transformada de Fourier), difracción de rayos X y SEM. (Microscopía electrónica de barrido). Posteriormente, el material nanoparticulado se evalúa frente a tres líneas celulares tumorales: línea celular de cáncer de pulmón humano A549 (CRM-CCL-185TM), línea celular de adenocarcinoma colorrectal humano HT29 (ATCC® HTB-38TM) y línea celular de cáncer de mama MCF7 (ATCC® HTB -22TM). Resultados: Mediante un método de síntesis verde, se sintetizaron nanopartículas de cobre a partir de extracto acuoso de frutos de S. chinensis, demostrando mediante métodos espectrales una morfología esférica con un tamaño cercano a los 26 nanómetros. Además, los resultados sugieren que las CuNP reducidas de S. chinensis fueron capaces de inducir principalmente la muerte celular apoptótica temprana en células cancerosas de una manera dependiente de la concentración. Conclusiones: Los resultados demostraron que el extracto acuoso del fruto de S. chinensis podría aplicarse para una síntesis más ecológica de nanopartículas de cobre con potencial efecto antiproliferativo.
Introdução: Schisandra chinensis é uma espécie vegetal cujos frutos são bastante conhecidos por seus múltiplos efeitos farmacológicos. No presente trabalho, extrato aquoso de frutos de S. chinensis é utilizado para produzir nanopartículas de cobre (CuNPs) através do método de síntese verde. Ensaios físicos e biológicos caracterizaram as nanopartículas obtidas. Objetivo: Produzir nanopartículas de cobre através de um método de síntese verde usando o extrato aquoso de frutos de S. chinensis e caracterizar este material usando métodos espectroscópicos, incluindo UV-Vis, FTIR (Fourier Transform Infrared Spectra), difração de raios X e MEV. (Microscopia eletrônica de varredura). Posteriormente, o material nanoparticulado é avaliado contra três linhagens de células tumorais: linhagem celular de câncer de pulmão humano A549 (CRM-CCL-185TM), linhagem celular de adenocarcinoma colorretal humano HT29 (ATCC® HTB-38TM) e linhagem celular de câncer de mama MCF7 (ATCC® HTB -22TM). Resultados: Através de um método de síntese verde, nanopartículas de cobre foram sintetizadas a partir de extrato aquoso de frutos de S. chinensis, demonstrando uma morfologia esférica com tamanho próximo a 26 nanômetros por meio de métodos espectrais. Além disso, os resultados sugerem que os CuNPs reduzidos de S. chinensis foram capazes de induzir principalmente a morte celular apoptótica precoce em células cancerosas de uma maneira dependente da concentração. Conclusões: Os resultados provaram que o extrato aquoso da fruta S. chinensis pode ser aplicado para uma síntese mais verde de nanopartículas de cobre com potencial efeito antiproliferativo.
Referencias
S. Panigrahi, S. Kundu, S.K. Ghosh, S. Nath, T. Pal, General method of synthesis for metal nanoparticles, Journal of Nanoparticle Research, 6(4), 411-414 (2004). Doi: https://doi.org/10.1007/S11051-004-6575-2
A. Tamilvanan, K. Balamurugan, K. Ponappa, B.M. Kumar, Copper nanoparticles: Synthetic strategies, properties and multifunctional application, International Journal of Nanoscience, 13(2), 1430001 (2014). Doi: https://doi.org/10.1142/S0219581X14300016
M.I. Din, R. Rehan, Synthesis, characterization, and applications of copper nanoparticles, Analytical Letters, 50(1), 50-62 (2017). Doi: https://doi.org/10.1080/00032719.2016.1172081
M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M.u. Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Annals of Microbiology, 60(1), 75-80 (2010). Doi: https://doi.org/10.1007/s13213-010-0015-6
E. Sizova, S. Miroshnikov, V. Polyakova, N. Gluschenko, A. Skalny, Copper nanoparticles as modulators of apoptosis and structural changes in tissues, Journal of Biomaterials and Nanobiotechnology, 3, 97-104 (2012). Doi: https://doi.org/10.4236/jbnb.2012.31013
P. Fakhri, B. Jaleh, M. Nasrollahzadeh, Synthesis and characterization of copper nanoparticles supported on reduced graphene oxide as a highly active and recyclable catalyst for the synthesis of formamides and primary amines, Journal of Molecular Catalysis A: Chemical, 383-384, 17-22 (2014). Doi: https://doi.org/10.1016/j.molcata.2013.10.027
N. Nagar, V. Devra, Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves, Materials Chemistry and Physics, 213, 44-51 (2018). Doi: https://doi.org/10.1016/j.matchemphys.2018.04.007
S.S. Joshi, S.F. Patil, V. Iyer, S. Mahumuni, Radiation induced synthesis and characterization of copper nanoparticles, Nanostructured Materials, 10(7), 1135- 1144 (1998). Doi: https://doi.org/10.1016/S0965-9773(98)00153-6
S. Chandra, A. Kumar, P.K. Tomar, Synthesis and characterization of copper nanoparticles by reducing agent, Journal of Saudi Chemical Society, 18(2), 149- 153 (2014). Doi: https://doi.org/10.1016/j.jscs.2011.06.009
P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Synthesis and characterization of copper nanoparticles, Materials Letters, 61(25), 4711- 4714 (2007). Doi: https://doi.org/10.1016/j.matlet.2007.03.014
L. Zhou, S. Wang, H. Ma, S. Ma, D. Xu, Y. Guo, Size-controlled synthesis of copper nanoparticles in supercritical water, Chemical Engineering Research and Design, 98, 36-43 (2015). Doi: https://doi.org/10.1016/j.cherd.2015.04.004
N.A. Dhas, C.P. Raj, A. Gedanken, Synthesis, characterization and properties of metallic copper nanoparticles, Chemistry of Materials, 10(5), 1446-1452 (1998). Doi: https://doi.org/10.1021/cm9708269
M.W. Amer, A.M. Awwad, Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity, Chemistry International, 7(1), 1-8 (2020). Doi: https://doi.org/10.5281/zenodo.4017993
N. Jayarambabu, A. Akshaykranth, T. Venkatappa-Rao, K. Venkateswara-Rao, R. Rakesh-Kumar, Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity, Materials Letters, 259, 126813 (2020). Doi: https://doi.org/10.1016/j.matlet.2019.126813
H.J. Lee, J.Y. Song, B.S. Kim, Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity, Journal of Chemical Technology and Biotechnology, 88(11), 1971-1977 (2013). Doi: https://doi.org/10.1002/JCTB.4052
S. Kirubandanan, V. Subha, S. Renganathan, Green synthesis of copper nanoparticles using methanol extract of Passiflora foetida and its drug delivery applications, International Journal of Green Chemistry, 3(2), 31-52 (2017). URL: https://chemical.journalspub.info/index.phpjournal=IJGC&page=article&op=view&path%5B%5D=399
S. Amaliyah, D.P. Pangesti, M. Masruri, A. Sabarudin, S.B. Sumitro, Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent, Heliyon, 6(8), e04636 (2020). Doi: https://doi.org/10.1016/j.heliyon.2020.e04636
P.N. Padma, S.T. Banu, S.C. Kumari, Studies on green synthesis of copper nanoparticles using Punica granatum, Annual Research & Review in Biology, 23(1), 1-10 (2018). Doi: https://doi.org/10.9734/arrb/2018/38894
S. Thakur, S. Sharma, S. Thakur, R. Radheshyam, Green synthesis of copper nano-particles using Asparagus adscendens roxb. Root and leaf extract and their antimicrobial activities, International Journal of Current Microbiology and Applied Sciences, 7(4), 683-694 (2018). Doi: https://doi.org/10.20546/ijcmas.2018.704.077
R.M. Kiriyanthan, S.A. Sharmili, R. Balaji, S. Jayashree, S. Mahboob, K.A. Al- Ghanim, F. Al-Misned, Z. Ahmed, M. Govindarajan, B. Vaseeharan, Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach, Photodiagnosis and Photodynamic Therapy, 32, 102058 (2020). Doi: https://doi.org/10.1016/j.pdpdt.2020.102058
P. Kachesova, I. Goroshinskaya, V. Borodulin, The effect of copper nanoparticles on the progression of tumor in vivo, Journal of Clinical Oncology, 31(15), 3084- 3084 (2013). Doi: https://doi.org/10.1200/jco.2013.31.15_suppl.3084
D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Bioinspired synthesis of chitosan/copper oxide nanocomposite using rutin and their anti-proliferative activity in human lung cancer cells, International Journal of Biological Macromolecules, 141, 476-483 (2019). Doi: https://doi.org/10.1016/j.ijbiomac.2019.08.235
E. Halevas, A. Pantazaki, Copper nanoparticles as therapeutic anticancer agents, Nanomedicine and Nanotechnology Journal, 2(1), 119 (2018). URL: https://www.scientificliterature.org/Nanomedicine/Nanomedicine-18-119.pdf
K.M. Metz, S.E. Sanders, J.P. Pender, M.R. Dix, D.T. Hinds, S.J. Quinn, A.D. Ward, P. Duffy, R.J. Cullen, P.E. Colavita, Green synthesis of metal nanoparticles via natural extracts: The biogenic nanoparticle corona and its effects on reactivity, ACS Sustainable Chemistry & Engineering, 3(7), 1610-1617 (2015). Doi: https://doi.org/10.1021/acssuschemeng.5b00304
H. Du, X. Tan, Z. Li, H. Dong, L. Su, Z. He, Q. Ma, S. Dong, M. Ramachandran, J. Liu, L. Cao, Effects of Schisandra chinensis polysaccharide-conjugated selenium nanoparticles on intestinal injury in mice, Animals, 13(5), 930 (2023). Doi: https://doi.org/10.3390/ani13050930
A. Szopa, R. Ekiert, H. Ekiert, Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies, Phytochemistry Reviews, 16(2), 195-218 (2017). Doi: https://doi.org/10.1007/S11101-016-9470-4
T. Zhao, G. Mao, M. Zhang, Y. Zou, W. Feng, X. Gu, Y. Zhu, R. Mao, L. Yang, X. Wu, Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice, International Journal of Biological Macromolecules, 63, 114-118 (2014). Doi: https://doi.org/10.1016/j.ijbiomac.2013.10.037
W. Li, X.N. Qu, Y. Han, S.W. Zheng, J. Wang, Y.P. Wang, Ameliorative effects of 5-hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice, International Journal of Molecular Sciences, 16(2), 2446 (2015). Doi: https://doi.org/10.3390/IJMS16022446
O. Wang, Q. Cheng, J. Liu, Y. Wang, L. Zhao, F. Zhou, B. Ji, Hepatoprotective effect of Schisandra chinensis (Turcz.) Baill. lignans and its formula with Rubus idaeus on chronic alcohol-induced liver injury in mice, Food & Function, 5(11), 3018-3025 (2014). Doi: https://doi.org/10.1039/C4FO00550C
L. Zhang, H. Chen, J. Tian, S. Chen, Antioxidant and anti-proliferative activities of five compounds from Schisandra chinensis fruit, Industrial Crops and Products, 50, 690-693 (2013). Doi: https://doi.org/10.1016/j.indcrop.2013.08.044
E.J. Jeong, H.K. Lee, K.Y. Lee, B.J. Jeon, D.H. Kim, J.-H. Park, J.-H. Song, J. Huh, J.-H. Lee, S.H. Sung, The effects of lignan-riched extract of Shisandra chinensis on amyloid-β-induced cognitive impairment and neurotoxicity in the cortex and hippocampus of mouse, Journal of Ethnopharmacology, 146(1), 347-354 (2013). Doi: https://doi.org/10.1016/J.JEP.2013.01.003
H. Liu, C. Wu, S. Wang, S. Gao, J. Liu, Z. Dong, B. Zhang, M. Liu, X. Sun, P. Guo, Extracts and lignans of Schisandra chinensis fruit alter lipid and glucose metabolism in vivo and in vitro, Journal of Functional Foods, 19(Part A), 296-307 (2015). Doi: https://doi.org/10.1016/J.JFF.2015.09.049
M.K. Kim, J.M. Lee, J.S. Do, W.S. Bang, Antioxidant activities and quality characteristics of omija (Schizandra chinesis Baillon) cookies, Food Science and Biotechnology, 24(3), 931-937 (2015). Doi: https://doi.org/10.1007/S10068-015-0120-1
K. Fu, H. Zhou, C. Wang, L. Gong, C. Ma, Y. Zhang, Y. Li, A review: Pharmacology and pharmacokinetics of Schisandrin A, Phytotherapy Research, 36(6), 2375-2393 (2022). Doi: https://doi.org/10.1002/PTR.7456
F. Sa, B.J. Guo, S. Li, Z.J. Zhang, H.M. Chan, Y. Zheng, S.M.Y. Lee, Pharmacokinetic study and optimal formulation of new anti-parkinson natural compound schisantherin A, Parkinson’s Disease, 2015, 951361 (2015). Doi: https://doi.org/10.1155/2015/951361
X. Wang, X. Wang, H. Yao, C. Shen, K. Geng, H. Xie, A comprehensive review on Schisandrin and its pharmacological features, Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 783-794 (2024). Doi: https://doi.org/10.1007/S00210-023-02687-Z
J. Pei, Q. Lv, J. Han, X. Li, S. Jin, Y. Huang, S. Jin, H. Yuan, Schisandra lignansloaded enteric nanoparticles: preparation, characterization, and in vitro–in vivo evaluation, Journal of Drug Targeting, 21(2), 180-187 (2013). Doi: https://doi.org/10.3109/1061186X.2012.737000
M. Shno, W. Yang, G. Han, Protective effects on myocardial infarction model: delivery of schisandrin B using matrix metalloproteinase-sensitive peptide-modified, PEGylated lipid nanoparticles, International Journal of Nanomedicine, 12, 7121-7130 (2017). doi: https://doi.org/10.2147/IJN.S141549
S.G. Balwe, A.A. Rokade, S.S. Park, Y.T. Jeong, Green synthesis and characterization of supported gold nanoparticles (Au@PS) from Schisandra chinensis fruit extract: An efficient and reusable catalyst for the synthesis of chromeno[2,3- d]pyrimidin-2-yl)phenol derivatives under solvent-free conditions, Catalysis Communications, 128, 105703 (2019). Doi: https://doi.org/10.1016/j.catcom. 2019.05.010
A. Chen, R. Hu, Self-assembly loading of Schisandra chinensis nanoparticles and its effect on the malignant biological behavior of ovarian cancer cells, Science of Advanced Materials, 15(2), 243-255 (2023). Doi: https://doi.org/10.1166/SAM.2023.4447
I. Subhankari, P.L. Nayak, Synthesis of copper nanoparticles using Syzygium aromaticum (cloves) aqueous extract by using green chemistry, World Journal of Nano Science & Technology, 2(1), 14-17 (2013). URL: https://www.idosi.org/wjnst/2(1)13/4.pdf
M. Atarod, M. Nasrollahzadeh, S.M. Sajadi, Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B, RSC Advances, 5(111), 91532-91543 (2015). Doi: https://doi.org/10.1039/C5RA17269A
C.-C. Chyau, Y.-B. Ker, C.-H. Chang, S.-H. Huang, H.-E. Wang, C.-C. Peng, R.Y. Peng, Schisandra chinensis peptidoglycan-assisted transmembrane transport of lignans uniquely altered the pharmacokinetic and pharmacodynamic mechanisms in human HepG2 cell model, PLoS One, 9(1), e85165 (2014). Doi: https://doi.org/10.1371/journal.pone.0085165
M.S. Hossain, S. Ahmed, Sustainable synthesis of nano CuO from electronic waste (E-waste) cable: Evaluation of crystallite size via Scherrer equation, Williamson- Hall plot, Halder-Wagner model, Monshi-Scherrer model, size-strain plot, Results in Engineering, 20, 101630 (2023). Doi: https://doi.org/10.1016/j.rineng.2023.101630
F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallographica Section A: Foundations and Advances, 72(3), 385-390 (2016). Doi: https://doi.org/10.1107/s205327331600365x
A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World Journal of Nano Science and Engineering, 02(03), 154-160 (2012). Doi: https://doi.org/10.4236/wjnse.2012.23020
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13