Publicado

2024-06-06

A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production

Un enfoque de reposicionamiento: la nitazoxanida inhibe la inflamación y la respuesta nociceptiva en modelos de ratones mediante una reducción del edema de la pata, la migración celular y la producción temprana de TNF-α

Uma abordagem de reposicionamento: a nitazoxanida inibe a inflamação e a resposta nociceptiva, em modelos com camundongos através da redução do edema da pata, da migração celular e da produção precoce de TNF-α

DOI:

https://doi.org/10.15446/rcciquifa.v53n2.114448

Palabras clave:

Nitazoxanide, anti-inflammatory, repositioning, antinociceptive, paw oedema, tumour necrosis factor-alpha (en)
Nitazoxanida, reposicionamiento, antiinflamatorio, antinociceptivo, edema de pata, factor de necrosis tumoral alfa (es)
Nitazoxanida, reposicionamento, antiinflamatório, antinociceptivo, edema de pata, fator de necrose tumoral alfa (pt)

Autores/as

  • Livian Rabelo Lopes Pharmacology of Pain and Inflammation Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil
  • Fellipe Alexandre Alves Moraes Pharmacology of Pain and Inflammation Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil
  • João Paulo Costa Rodrigues Pharmacology of Pain and Inflammation Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil
  • Flávio Martins de Oliveira Molecular Biology Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil
  • Débora de Oliveira Lopes Molecular Biology Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil
  • Flávia Carmo Horta Pinto Experimental Pathology Laboratory, Federal University of São João del-Rei, São João del-Rei, Brazil
  • Aline Aparecida Saldanha Pharmacology of Pain and Inflammation Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil
  • Adriana Cristina Soares Pharmacology of Pain and Inflammation Laboratory, Federal University of São João del-Rei, Divinópolis, Brazil

Introduction: Various studies have evaluated the in vitro anti-inflammatory effect of nitazoxanide (NTZ), suggesting new therapeutic functions for this drug. Aims: To evaluate the in vivo anti-inflammatory and antinociceptive activities of NTZ in acute mice models. Methods: Mice models of paw oedema, abdominal writhing, formalin and the rota-rod test were used. Results: Oral treatment with NTZ induced inhibition of paw oedema (60.00% and 66.67% at doses of 10 and 30 mg/kg, respectively) in the first hour after inflammatory stimulus, carrageenan (Cg). There was also a significant inhibition of 60.71% and 40.00% at the 30 mg/kg dose after 4h and 6 h, respectively after inflammation. Four hours after inflammation, the histological analysis of the footpad of animals treated with 30 mg/kg of NTZ showed a reduction in the migration of inflammatory cells by 65.77%. It is also important to highlight that there was a significant reduction of tumor necrose factor-alfa (TNF-α) in the initial phase of inflammation, 2 h after administration of the Cg. There was an inhibition in abdominal contortions by 54.14% and 56.21% at 30 and 90 mg/kg doses, respectively. In the formalin test only the dose of 90 mg/kg showed antinociceptive action (54.85%; first phase and 45.67%; second phase). The results from rota-rod test showed that motor coordination was not affected with NTZ. Conclusions: This anti-inflammatory activity of NTZ appears to be a consequence of its ability to reduce the levels of an important mediator of the inflammatory response and pain the TNF-α.

Introducción: Diversos estudios han evaluado el efecto antiinflamatorio in vitro de la nitazoxanida (NTZ), sugiriendo nuevas funciones terapéuticas para este fármaco. Objetivos: Evaluar las actividades antiinflamatorias y antinociceptivas in vivo de NTZ en modelos de ratones agudos. Métodos: Se utilizaron modelos en ratones de edema de pata, contorsiones abdominales, de formalina y prueba de rota-rod. Resultados: El tratamiento oral con NTZ indujo la inhibición del edema de la pata (60,00% y 66,67% a dosis de 10 y 30 mg/kg, respectivamente) en la primera hora después del estímulo inflamatorio con carragenano (Cg). También hubo una inhibición significativa del 60,71% y 40,00% con la dosis de 30 mg/kg después de 4 h y 6 h, respectivamente, después de la inflamación. Cuatro horas después de la inflamación, el análisis histológico de la almohadilla plantar de los animales tratados con 30 mg/kg de NTZ mostró una reducción de la migración de células inflamatorias del 65,77%. También es importante resaltar que hubo una reducción significativa del factor de necrosis tumoral alfa (TNF-α) en la fase inicial de la inflamación, 2 h después de la administración del Cg. Hubo una inhibición en las contorsiones abdominales de 54,14% y 56,21% con dosis de 30 y 90 mg/kg, respectivamente. En la prueba de formalina sólo la dosis de 90 mg/kg mostró acción antinociceptiva (54,85%; primera fase y 45,67%; segunda fase). Los resultados de la prueba rota-rod mostraron que la coordinación motora no se vio afectada con NTZ. Conclusiones: Esta actividad antiinflamatoria de NTZ parece estar relacionada con su capacidad para reducir los niveles de un importante mediador de la respuesta inflamatoria y del dolor el TNF-α.

Introdução: Diversos estudos avaliaram o efeito antiinflamatório in vitro da nitazoxanida (NTZ), sugerindo novas funções terapêuticas para esta droga. Objetivos: Avaliar as atividades anti-inflamatória e antinociceptiva in vivo da NTZ em modelos agudos com camundongos. Métodos: Foram utilizados modelos de camundongos com edema de pata, contorções abdominais, teste de formalina e teste rota-rod. Resultados: O tratamento oral com NTZ induziu inibição do edema de pata (60,00% e 66,67% nas doses de 10 e 30 mg/kg, respectivamente) na primeira hora após o estímulo inflamatório, carragenina (Cg). Houve também uma inibição significativa de 60,71% e 40,00% na dose de 30 mg/kg após 4h e 6h, respectivamente, após a inflamação. Quatro horas após a inflamação, a análise histológica da pata dos animais tratados com 30 mg/kg de NTZ mostrou redução na migração de células inflamatórias em 65,77%. É importante destacar também que houve redução significativa do fator de necrose tumoral alfa (TNF-α) na fase inicial da inflamação, 2 horas após a administração do Cg. Houve inibição nas contorções abdominais em 54,14% e 56,21% nas doses de 30 e 90 mg/kg, respectivamente. No teste da formalina apenas a dose de 90 mg/kg apresentou ação antinociceptiva (54,85%; primeira fase e 45,67%; segunda fase). Os resultados do teste rota-rod mostraram que a coordenação motora não foi afetada com NTZ. Conclusões: Esta atividade anti-inflamatória da NTZ parece ser consequência da sua capacidade de reduzir os níveis de um importante mediador da resposta inflamatória e da dor o TNF-α.

Referencias

Y. Hua, X. Dai, Y. Xu, G. Xing, H. Liu, T. Lu, Y. Chen, Y. Zhang, Drug repositioning: Progress and challenges in drug discovery for various diseases, European Journal of Medicinal Chemistry, 234, 114239 (2022). Doi: https://doi.org/10.1016/j.ejmech.2022.114239

J.-P. Jourdan, R. Bureau, C. Rochais, P. Dallemagne, Drug repositioning: A brief overview, Journal of Pharmacy and Pharmacology, 72(9), 1145-1151 (2020). Doi: https://doi.org/10.1111/jphp.13273

X. Hanqing, L. Jie, X. Haozhe, Y. Wang. Review of drug repositioning approaches and resources, International Journal of Biological Sciences, 14(10), 1232-1244 (2018). Doi: https://doi.org/10.7150/ijbs.24612

V.S. Somvanshi, B.L. Ellis, Y. Hu, R.V. Aroian, Nitazoxanide: Nematicidal mode of action and drug combination studies, Molecular and Biochemical Parasitology, 193(1), 1-8 (2014). Doi: https://doi.org/10.1016/j.molbiopara.2013.12.002

L.D. Jasenosky, C. Cadena, C.E. Mire, V. Borisevich, V. Haridas, S. Ranjbar, A. Nambu, S. Bavari, V. Soloveva, S. Sadukhan, G.H. Cassell, T.W. Geisbert, S. Hur, A.E. Goldfeld, The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus, iScience, 19, 1279-1290 (2019). Doi: https://doi.org/10.1016/j.isci.2019.07.003

G.A.R. Soriano, J. Blac, Nitazoxanide use as part of an empiric multidrug regimen in treating children with suspected Helicobacter pylori infection, Case Reports in Gastroenterology, 9(1), 36-42 (2015). Doi: https://doi.org/10.1159/000375116

A.V. Stachulski, C. Pidathala, E.A. Row, R. Sharma, N.G. Berry, M. Iqbal, J. Bentley, S.A. Allman, G. Edwards, A. Helm, J. Hellier, B.E. Korba, J.E. Semple, J.-F. Rossignol, Thiazolides as novel antiviral agents: 1. Inhibition of hepatitis B virus replication, Journal of Medicinal Chemistry, 54(12), 4119-4132 (2011). Doi: https://doi.org/10.1021/jm200153p

J.F. Rossignol, Thiazolides: A new class of antiviral drugs, Expert Opinion on Drug Metabolism & Toxicology, 5(6), 667-674 (2009). Doi: https://doi.org/10.1517/17425250902988487

J.F. Rossignol, S.L. Frazia, L. Chiappa, A. Ciucci, M.G. Santoro, Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the posttranslational level, Journal of Biological Chemistry, 284(43), 29798-29808 (2009). Doi: https://doi.org/10.1074/jbc.M109.029470

L.M. Fox, L.D. Saravolatz, Nitazoxanide: A new thiazolide antiparasitic agent, Clinical Infectious Diseases, 40(8), 1173-1180 (2005). Doi: https://doi.org/10.1086/428839

A.S. Lokhande, P.V. Devarajan, A review on possible mechanistic insights of nitazoxanide for repurposing in COVID-19, European Journal of Pharmacology, 891, 173748 (2021). Doi: https://doi.org/10.1016/j.ejphar.2020.173748

L.E. Walker, R. FitzGerald, G. Saunders, R. Lyon, M. Fisher, K. Martin, I. Eberhart, C. Woods, S. Ewings, C. Hale, et al., An open-label, adaptive, phase 1 trial of high-dose oral nitazoxanide in healthy volunteers: An antiviral candidate for SARS-CoV-2, Clinical Pharmacology & Therapeutics, 111(3), 585-594 (2022). Doi: https://doi.org/10.1002/cpt.2463

S. Abd-Elsalam, Sherief, F. El-Kalla, N. Elwan, R. Badawi, N. Hawash, S. Soliman, S. Soliman, W. Elkhalawany, M.-A. ElSawaf, A. Elfert, A randomized controlled trial comparing nitazoxanide plus lactulose with lactulose alone in the treatment of overt hepatic encephalopathy, Journal of Clinical Gastroenterology, 53(3), 226-230 (2019). Doi: https://doi.org/10.1097/MCG.0000000000001040

J.-F. Rossignol, Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus, Journal of Infection and Public Health, 9(3), 227-230 (2016). Doi: https://doi.org/10.1016/j.jiph.2016.04.001

G. Belardo, O. Cenciarelli, S. La Frazia, J.-F. Rossignol, M.G. Santoro, Synergistic effect of nitazoxanide with neuraminidase inhibitors against influenza A viruses in vitro, Antimicrobial Agents and Chemotherapy, 59(2), 1061-1069 (2015). Doi: https://doi.org/10.1128/AAC.03947-14

J.-F. Rossignol, Nitazoxanide: A first-in-class broad-spectrum antiviral agent, Antiviral Research, 110, 94-103 (2014). Doi: https://doi.org/10.1016/j.antiviral.2014.07.014

J.-F. Rossignol, E.B. Keeffe, Thiazolides: A new class of drugs for the treatment of chronic hepatitis B and C, Future Microbiology, 3(5), 539-545 (2008). Doi: https://doi.org/10.2217/17460913.3.5.539

J. Haffizulla, A. Hartman, M. Hoppers, H. Resnick, S. Samudrala, C. Ginocchio, M. Bardin, J.-F. Rossignol, Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomized, placebocontrolled, phase 2b/3 trial, The Lancet: Infectious Diseases, 14(7), 609-618 (2014). Doi: https://doi.org/10.1016/S1473-3099(14)70717-0

P.R.M. Rocco, P.L. Silva, F.F. Cruz, M.A.C. Melo-Junior, P.F.G.M.M. Tierno, M.A. Moura, L.F.G. De Oliveira, C.C. Lima, E.A. Dos Santos, W.F. Junior, A.P.S.M. Fernandes, K.G. Franchini, E. Magri, N.F. de Moraes, J.M.J. Gonçalves, M.N. Carbonieri, I.S. Dos Santos, N.F. Paes, P.V.M. Maciel, R.P. Rocha, A.F. de Carvalho, P.A. Alves, J.L. Proença-Módena, A.T. Cordeiro,

D.B.B. Trivella, R.E. Marques, R.R. Luiz, P.Pelosi, J.R. Lapa e Silva, Early use of nitazoxanide in mild COVID-19 disease: A randomized, placebo-controlled trial, European Respiratory Journal, 58(1), 2003725 (2021). Doi: https://doi.org/10.1183/13993003.03725-2020

V.F. Blum, S. Cimerman, J.R. Hunter, P. Tierno, A. Lacerda, A. Soeiro, F. Cardoso, N.C. Bellei, J. Maricato, N. Mantovani, M. Vassao, D. Dias, J. Galinskas, L.M. Ramos-Janini, J.R. Santos-Oliveira, A.M. Da-Cruz, R.S. Diaz, Show less Nitazoxanide superiority to placebo to treat moderate COVID-19 - A pilot prove of concept randomized double-blind clinical trial, eClinicalMedicine, 37, 100981 (2021). Doi: https://doi.org/10.1016/j.eclinm.2021.100981

Y. Guttner, H.M. Windsor, C.H. Viiala, L. Dusci, B.J. Marshall, Nitazoxanide in treatment of Helicobacter pylori: A clinical and in vitro study, Antimicrobial Agents and Chemotherapy, 47(12), 3780-3783 (2003). Doi: https://doi.org/10.1128/AAC.47.12.3780-3783.2003

L. Dubreuil, I. Houcke, Y. Mouton, J.-F. Rossignol, In vitro evaluation of activities of nitazoxanide and tizoxanide against anaerobes and aerobic organisms, Antimicrobial Agents and Chemotherapy, 40(10), 2266-2270 (1996). Doi: https://doi.org/10.1128/AAC.40.10.2266

J. Shou, M. Wang, X. Cheng, X. Wang, L. Zhang, Y. Liu, C. Fei, C. Wang, F. Gu, F. Xue, J. Li, K. Zhang, Tizoxanide induces autophagy by inhibiting PI3K/Akt/mTOR pathway in RAW264.7 macrophage cells, Archives of Pharmacal Research, 43(2), 257-270 (2020). Doi: https://doi.org/10.1007/s12272-019-01202-4

J. Shou, X. Cheng, X. Wang, F. Xue, M. Wang, Y. Liu, et al., Effects of tizoxanide on oxidative stress and inflammatory cytokine on lipopolysaccharide induced in raw264.7 cells, Chinese Journal of Animal Infectious Diseases, 27(2), 71-77 (2019).

J. Shou, X. Kong, X. Wang, Y. Tang, C. Wang, M. Wang, L. Zhang, Y. Liu, C. Fei, F. Xue, J. Li, K. Zhang, Tizoxanide inhibits inflammation in LPS-activated RAW264.7 macrophages via the suppression of NF-κB and MAPKs activation, Inflammation, 42(4), 1336-1349 (2019). Doi: https://doi.org/10.1007/s10753-019-00994-3

S.K. Hong, H.J. Kim, C.S. Song, I.S. Choi, J.B. Lee, S.Y. Park, Nitazoxanide suppresses IL-6 production in LPS-stimulated mouse macrophages and TG-injected mice, International Immunopharmacology, 13(1), 23-27 (2012). Doi: https://doi.org/10.1016/j.intimp.2012.03.002

C.J. Hall, S.M. Wicker, A.T. Chien, A. Tromp, L.M. Lawrence, X. Sun, G.W. Krissansen, K.E. Crosier, P.S. Crosier, Repositioning drugs for inflammatory disease – Fishing for new anti-inflammatory agents, Disease Models & Mechanisms, 7(9), 1069-1081 (2014). Doi: https://doi.org/10.1242/dmm.016873

R. Medzhitov, C. Janeway, Jr., Innate immunity, The New England Journal of Medicine, 343(5), 338-344 (2008). Doi: https://doi.org/10.1056/NEJM200008033430506

A. Roy, M. Srivastava, U. Saqib, D. Liu, S. M. Faisal, S. Sugathan, S. Bishnoi, M.S. Baig, Potential therapeutic targets for inflammation in toll-like receptor 4(TLR4)-mediated signaling pathways, International Immunopharmacology, 40, 79-89 (2016). Doi: https://doi.org/10.1016/j.intimp.2016.08.026

M.D. Howard, E.D. Hood, B. Zern, V.V. Shuvaev, T. Grosser, V.R. Muzykantov, Nanocarriers for vascular delivery of anti-inflammatory agents, Annual Review of Pharmacology and Toxicology, 54, 205-226 (2014). Doi: https://doi.org/10.1146/annurev-pharmtox-011613-140002

D. Mathis, S.E. Shoelson, Immunometabolism: An emerging frontier, Nature Reviews Immunology, 11, 81-83 (2011). Doi: https://doi.org/10.1038/nri2922

S. Alrdahe, A.H. Sadoun, T. Torbica, A.E. Mckenzie, F.L. Boliche, A.J.M. Boulton, K.A. Mace, Dysregulation of macrophage development and phenotype in diabetic human macrophages can be rescued by Hoxa3 protein transduction, PLoS One, 14(10), e0223980 (2019). Doi: https://doi.org/10.1371/journal.pone.0223980

S. Bindu, S. Mazumder, U. Bandyopadhyay, Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective, Biochemical Pharmacology, 180, 114147 (2020). Doi: https://doi.org/10.1016/j.bcp.2020.114147

C. Strehl, L. Ehlers, T. Gaber, F. Buttgereit, Glucocorticoids-all-rounders tackling the versatile players of the immune system, Frontiers in Immunology, 10, 1744 (2019). Doi: https://doi.org/10.3389/fimmu.2019.01744

J. Zhao, S. Cai, L. Zhang, Y. Rao, X. Kang, Z. Feng, Progress, challenges, and prospects of research on the effect of gene polymorphisms on adverse reactions to opioids, Pain and Therapy, 11(2), 395-409 (2022). Doi: https://doi.org/10.1007/s40122-022-00374-0

X.-M. Peng, G.V.L. Damu, C.-H. Zhou, Current developments of coumarin compounds in medicinal chemistry, Current Pharmaceutical Design, 19(21), 3884-3930 (2013). Doi: https://doi.org/10.2174/1381612811319210013

L. Levy, Carrageenan paw edema in the mouse, Life Sciences, 8(11, Part 1), 601-606 (1969). Doi: https://doi.org/10.1016/0024-3205(69)90021-6

H. Sadeghi, V. Hajhashemi, M. Minaiyan, A. Movahedian, A. Talebi, A. Ardeshir, A study on the mechanisms involving the anti-inflammatory effect of amitriptyline in carrageenan-induced paw edema in rats, European Journal of Pharmacology, 667(1-3), 396-401 (2011). Doi: https://doi.org/10.1016/j.ejphar.2011.05.053

H.C. Santiago, M.F.B. Pires, D.G. Souza, E. Roffê, D.F. Côrtes, W.L. Tafuri, M.M. Teixeira, LQ. Vieira, Platelet activating factor receptor-deficient mice present delayed interferon-γ upregulation and high susceptibility to Leishmania amazonensis infection, Microbes and Infection, 8(11), 2569-2577 (2006). Doi: https://doi.org/10.1016/j.micinf.2006.06.011

R. Koster, M. Anderson, E.J. De Beer, Acetic acid for analgesic screening, Federation Procedures, 18, 412-417 (1959).

S. Hunskaar, K. Hole, The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain, Pain, 30(1), 103-114 (1987). Doi: https://doi.org/10.1016/0304-3959(87)90088-1

Z.R. Vaz, V.C. Filho, R.A. Yunes, J.B. Calixto, Antinociceptive action of 2-(4-bromobenzoyl)-3-methyl-4,6-dimethoxy benzofuran, a novel xanthoxyline derivative on chemical and thermal models of nociception in mice, Journal of Pharmacology and Experimental Therapeutics, 278(1), 304-312 (1996). URL: https://jpet.aspetjournals.org/content/278/1/304

P.R. Martins-Filho, J.A. Barreto-Alves, R. Fakhouri, Potential role for nitazoxanide in treating SARS-CoV-2 infection, American Journal of Physiology: Lung Cellular and Molecular Physiology, 319(1), L35-L36 (2020). Doi: https://doi.org/10.1152/ajplung.00170.2020

A. Shakya, H.R. Bhat, S.K. Ghosh, Update on nitazoxanide: A multifunctional chemotherapeutic agent, Current Drug Discovery Technologies, 15(3), 201-213 (2018). Doi: https://doi.org/10.2174/1570163814666170727130003

K.R. Patil, B.M. Mahajan, S.B. Unger, N.S. Goyal, S. Belemkar, S.J. Surana, S. Ojha, C.R. Patil, Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals, International Journal of Molecular Sciences, 20(18), 4367 (2019). Doi: https://doi.org/10.3390/ijms20184367

I.G. Otterness, P.F. Moore, Carragenan foot edema test, Methods in Enzymology, 62, 320-327 (1988). Doi: https://doi.org/10.1016/0076-6879(88)62086-6

A.A. Saldanha, L. Fernandes do Carmo, S. Batista do Nascimento, N. Alves de Matos, C. de Carvalho-Veloso, A.H. Fonsêca-Castro, R.C.H. De Vos, A. Klein, J.M. de Siqueira, C.A. Carollo, T. Vieira do Nascimento, M.C. Toffoli-Kadri, A.C. Soares, Chemical composition and anti-inflammatory activity of the leaves of Byrsonima verbascifolia, Journal of Natural Medicines, 70(4), 760-768 (2016). Doi: https://doi.org/10.1007/s11418-016-1011-3

A.A. Saldanha, J.M. de Siqueira, A.H. Fonsêca-Castro, R.I.M. de Azambuja-Ribeiro, F. Martins de Oliveira, D. de Oliveira-Lopes, F.C.H. Pinto, D. Brentan-Silva, A.C. Soares, Anti-inflammatory effects of the butanolic fraction of Byrsonima verbascifolia leaves: Mechanisms involving inhibition of tumor necrosis factor alpha, prostaglandin E2 production, and migration of polymorphonuclear leucocyte in vivo experimentation, International Immunopharmacology, 31, 123-131 (2016). Doi: https://doi.org/10.1016/j.intimp.2015.12.031

M.A. Sugimoto, L.P. Sousa, V. Pinho, M. Perretti, M.M. Teixeira, Resolution of inflammation: What controls its onset? Frontiers in Immunology, 7, 160 (2016). Doi: https://doi.org/10.3389/fimmu.2016.00160

R.F. Kraus, M.A. Gruber, Neutrophils from bone marrow to first-line defense of the innate immune system, Frontiers in Immunology, 12, 767175 (2021). Doi: https://doi.org/10.3389/fimmu.2021.767175

A.G.M. Pacheco, E.J. Pacheco, L.A.R.O. Macedo, J.C. Silva, S.R.G. Lima-Saraiva, V.P. Barros, A. Brancoa, J.S.S. Quintansd, L.J. Quintans-Junior, H.D.M. Coutinhoe, I.R.A. Menezese, J.R.G.S. Almeida, Antinociceptive and anti-inflammatory activities of Hymenaea martiana Hayne (Fabaceae) in mice, Brazilian Journal of Biology, 82, e240359 (2022). Doi: https://doi.org/10.1590/1519-6984.240359

M.A.M. Bezerra-Medeiros, M. Gama e Silva, J. de Menezes Barbosa, É. Martins de Lavor, T. Feitosa-Ribeiro, C.A. Ferreira-Macedo, L.A.M. de Souza Duarte-Filho, T. Alves-Feitosa, J.d.J. Silva, H.H. Fokoue, C.R. Melo-Araújo, A.d.A. Gonsalves, L.A. de Araújo-Ribeiro, J.R.G. da Silva-Almeida, Antinociceptive and anti-inflammatory effects of hydrazone derivatives and their possible mechanism of action in mice, PLoS One, 16(11), e0258094 (2021). Doi: https://doi.org/10.1371/journal.pone.0258094

B.M. de Campos-Facchin, J.S. da Rosa, A.B.G. Luz, Y.J.K. Moon, T.C. de Lima, R. Casoti, M. Weber-Biavatti, E. Monguilhott-Dalmarco, T.S. Fröde, Systemic administration of Calea pinnatifida inhibits inflammation induced by carrageenan in a murine model of pulmonary neutrophilia, Mediators of Inflammation, 2020, 4620251 (2020). Doi: https://doi.org/10.1155/2020/4620251

X. Dai, M. Ding, W. Zhang, Z. Xuan, J. Liang, D. Yang, Q. Zhang, B. Su, H. Zhu, X. Jia, Anti-inflammatory effects of different elution fractions of Er-Miao-San on acute inflammation induced by carrageenan in rat paw tissue, Medical Science Monitor, 25, 7958-7965 (2019). Doi: https://doi.org/10.12659/MSM.916977

M. Sobeh, S. Rezq, O.M. Sabry, M.A.O. Abdelfattah, M.A.E. Raey, W.A.E. Kashak, A.M. El-Shazly, M.F. Mahmoud, M. Wink, Albizia anthelmintica: HPLC-MS/MS profiling and in vivo anti-inflammatory, pain killing and antipyretic activities of its leaf extract, Biomedicine & Pharmacotherapy, 115, 108882 (2019). Doi: https://doi.org/10.1016/j.biopha.2019.108882

C. Velázquez-González, R. Cariño-Cortés, J.A. Gayosso de Lucio, M.I. Ortiz, M.d.l.O. Arciniega, D.A. Altamirano-Báez, L. Jiménez-Ángeles, M. Bautista Ávila, Antinociceptive and anti-inflammatory activities of Geranium bellum and its isolated compounds, BMC Complementary and Alternative Medicine, 14, 506(2014). Doi: https://doi.org/10.1186/1472-6882-14-506

A.A. Saldanha, L. Vieira, D.S. da Silva-Maia, F. Martins de Oliveira, R.I.M. de Azambuja-Ribeiro, R.G. Thomé, H. Batista dos Santos, D. de Oliveira Lopes, C.A. Carollo, D. Brentan-Silva, A.C. Soares, J.M. de Siqueira, Anti-inflammatory and antinociceptive activities of a phenylpropanoid-enriched fraction of Duguetia furfuracea, Inflammopharmacology, 29(2), 409-422 (2021). Doi: https://doi.org/10.1007/s10787-020-00775-7

L. Vieira, A.A. Saldanha, A. Marinho-Moraes, F. Martins de Oliveira, D. Oliveira-Lopes, L.A. de Oliveira-Barbosa, R.I.M. de Azambuja-Ribeiro, R.G. Thomé, H. Batista dos Santos, J.A.F. Perez-Villar, A.C. Soares, 21-Benzylidene digoxin, a novel digoxin hemi-synthetic derivative, presents an anti-inflammatory activity through inhibition of edema, tumor necrosis factor alpha production, inducible nitric oxide synthase expression, and leukocyte migration, International Immunopharmacology, 65, 174-181 (2018). Doi: https://doi.org/10.1016/j.intimp.2018.10.010

X.-M. Li, R.-Z. He, Y. Li, Z.-F. Ruan, Tizoxanide mitigates inflammatory response in LPS-induced neuroinflammation in microglia via restraining p38/MAPK pathway, European Review for Medical and Pharmacological Sciences, 24(13), 6446-6454 (2020). Doi: https://doi.org/10.26355/eurrev_202006_21543

D. Trabattoni, F. Gnudi, S. V. Ibba, I. Saulle, S. Agostini, M. Masetti, M. Biasin, J.-F. Rossignol, M. Clerici, Thiazolides elicit anti-viral innate immunity and reduce HIV replication, Scientific Reports, 6, 27148 (2016). Doi: https://doi.org/10.1038/srep27148

L. Fan, X.X. Qiu, Z.Y. Zhu, J.-L. Lv, J. Lu, F. Mao, J. Zhu, J.-Y. Wang, X.-W. Guan, J. Chen, J. Ren, J.-M. Ye, Y.-H. Zhao, J. Li, X. Shen, Nitazoxanide, an anti-parasitic drug, efficiently ameliorates learning and memory impairments in AD model mice, Acta Pharmacologica Sinica, 40(10), 1279-1291 (2019). Doi: https://doi.org/10.1038/s41401-019-0220-1

M. Castillo-Salazar, F. Sánchez-Muñoz, R. Springall del Villar, G. Navarrete-Vázquez, A. Hernández-DiazCouder, C. Mojica-Cardoso, S. García-Jiménez, C. Toledano-Jaimes, G. Bernal-Fernández, Nitazoxanide exerts immunomodulatory effects on peripheral blood mononuclear cells from type 2 diabetes patients, Biomolecules, 11(12), 1817 (2021). Doi: https://doi.org/10.3390/biom11121817

M.A. Tantawy, N.A. El-Sherbeeny, N. Helmi, R. Alazragi, N. Salem, S.M. Elaidy, Synthetic antiprotozoal thiazolide drug induced apoptosis in colorectal cancer cells: Implications of IL-6/JAK2/STAT3 and p53/caspases-dependent signaling pathways based on molecular docking and in vitro study, Molecular and Cellular Biochemistry, 469(1-2), 143-157 (2020). Doi: https://doi.org/10.1007/s11010-020-03736-4

D.-i. Jang, A.-H. Lee, H.-Y. Shin, H.-R. Song, J.-H. Park, T.-B. Kang, S.-R. Lee, S.-H. Yang, The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics, International Journal of Molecular Sciences, 22(5), 2719 (2021). Doi: https://doi.org/10.3390/ijms22052719

Y. Wang, M. Guo, Y. Ren, L. Jia, G. Yu, Drug repositioning based on individual bi-random walks on a heterogeneous network, BMC Bioinformatics, 20(Suppl 15), 547 (2019). Doi: https://doi.org/10.1186/s12859-019-3117-6

Y.T. Yeung, A. Faisal, A. Guerrero-Castilla, S. Arguelles, Signaling pathways in inflammation and anti-inflammatory therapies, Current Pharmaceutical Design, 24(14), 1449-1484 (2018). Doi: https://doi.org/10.2174/1381612824666180327165604

J.P. Mitchell, R.J. Carmody, NF-κB and the transcriptional control of inflammation, Internation Review of Cell and Molecular Biology, 335, 41-84 (2018). Doi: https://doi.org/10.1016/bs.ircmb.2017.07.007

Q. Zhang, M.J. Lenardo, D. Baltimore, 30 Years of NF-κB: A blossoming of relevance to human pathobiology, Cell, 168(1-2), 37-57 (2017). Doi: https://doi.org/10.1016/j.cell.2016.12.012

P.J. Barnes, M. Karin, Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases, The New England Journal of Medicine, 336(15), 1066-1071 (1997). Doi: https://doi.org/10.1056/NEJM199704103361506

B. Kaminska, MAPK signalling pathways as molecular targets for antiinflammatory therapy – from molecular mechanisms to therapeutic benefits, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1754(1-2), 253-262 (2005). Doi: https://doi.org/10.1016/j.bbapap.2005.08.017

T.B. Tumer, F.C. Onder, H. Ipek, T. Gungor, S. Savranoglu, T.T. Tok, A. Celik, M. Ay, Biological evaluation and molecular docking studies of nitro benzamide derivatives with respect to in vitro anti-inflammatory activity, International Immunopharmacology, 43, 129-139 (2017). Doi: https://doi.org/10.1016/j.intimp.2016.12.009

N. De Santo, J. Ehrisman, Research perspective: Potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose? Cancers, 5(3), 1163-1176 (2013). Doi: https://doi.org/10.3390/cancers5031163

V.M. Couto, F.C. Vilela, D.F. Dias, M.H. Santos, R. Soncini, C.G. Nascimento, A. Giusti-Paiva, Antinociceptive effect of extract of Emilia sonchifolia in mice, Journal of Ethnopharmacology, 134(2), 348-53 (2011). Doi: https://doi.org/10.1016/j.jep.2010.12.028

D. Le Bars, M. Gozariu, S.W. Cadden, Animal models of nociception, Pharmacological Reviews, 53(4), 597-652 (2001). URL: https://www.researchgate.net/publication/11621016_Animal_Models_of_Nociception

B.G. Pinheiro, A.S. Silva, G.E. Souza, J.G. Figueiredo, F.Q. Cunha, S. Lahlou, J.K.R. da Silva, J.G.S. Maia, P.J.C. Sousa, Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud, Journal of Ethnopharmacology, 138(2), 479-486 (2011). Doi: https://doi.org/10.1016/j.jep.2011.09.037

P.R. Verma, A.A. Joharapurkar, V.A. Chatpalliwar, A.J. Asnani, Antinociceptive activity of alcoholic extract of Hemidesmus indicus R.Br. in mice, Journal of Ethnopharmacology, 102(2), 298-301 (2005). Doi: https://doi.org/10.1016/j.jep.2005.05.039

T.M. Cunha, W.A. Verri, D.A. Valerio, A.T. Guerrero, L.G. Nogueira, S.M. Vieira, D.G. Souza, M.M. Teixeira, S. Poole, S.H. Ferreira, F.Q. Cunha, Role of cytokines in mediating mechanical hypernociception in a model of delayed-type hypersensitivity in mice, European Journal of Pain, 12(8), 1059-1068 (2008). Doi: https://doi.org/10.1016/j.ejpain.2008.02.003

F.A. Pinho-Ribeiro, W.A. Verri, Jr., I.M. Chiu, Nociceptor sensory neuronimmune interactions in pain and inflammation, Trends in Immunology, 38(1), 5-19 (2017). Doi: https://doi.org/10.1016/j.it.2016.10.001

R. Afridi, A.U. Khan, S. Khalid, B. Shal, H. Rasheed, M.Z. Ullah, O. Shehzad, Y.S. Kim, S. Khan, Anti-hyperalgesic properties of a flavanone derivative poncirin in acute and chronic inflammatory pain models in mice (Retracted Article), BMC Pharmacology and Toxicology, 20(1), 57 (2019). Doi: https://doi.org/10.1186/s40360-019-0335-5

K. Lopes, J. Oliveira, F.J.C. Sousa-Junior, T.d.F. Santos, D. Andrade, S.L. Andrade, W.L. Pereira, P.W.P. Gomes, M.C. Monteiro, C.Y. Yoshioka e Silva, M.N. da Silva, C.F. Maia, E.A. Fontes-Júnior, Chemical composition, toxicity, antinociceptive, and anti-inflammatory activity of dry aqueous extract of Varronia Multispicata (Cham.) Borhidi (Cordiaceae) leaves, Frontiers in Pharmacology, 10, 1376 (2019). Doi: https://doi.org/10.3389/fphar.2019.01376

N. Ai, R.D. Wood, W.J. Welsh, Identification of nitazoxanide as a group I metabotropic glutamate receptor negative modulator for the treatment of neuropathic pain: An in silico drug repositioning study, Pharmaceutical Research, 32(8), 2798-2807 (2015). Doi: https://doi.org/10.1007/s11095-015-1665-7

G.M. Abu-Taweel, A.-M. Mohsen-G., P. Antonisamy, S. Arokiyaraj, H.-J. Kim, S.-J. Kim, K.H. Park, Y.O. Kim, Spirulina consumption effectively reduces anti-inflammatory and pain-related infectious diseases, Journal of Infection and Public Health, 12(6), 777-782 (2019). Doi: https://doi.org/10.1016/j.jiph.2019.04.014

Cómo citar

APA

Rabelo Lopes, L., Alves Moraes, F. A., Costa Rodrigues, J. P., de Oliveira, F. M., de Oliveira Lopes, D., Horta Pinto, F. C., Aparecida Saldanha, A. y Cristina Soares, A. (2024). A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), 385–413. https://doi.org/10.15446/rcciquifa.v53n2.114448

ACM

[1]
Rabelo Lopes, L., Alves Moraes, F.A., Costa Rodrigues, J.P., de Oliveira, F.M., de Oliveira Lopes, D., Horta Pinto, F.C., Aparecida Saldanha, A. y Cristina Soares, A. 2024. A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production. Revista Colombiana de Ciencias Químico-Farmacéuticas. 53, 2 (jun. 2024), 385–413. DOI:https://doi.org/10.15446/rcciquifa.v53n2.114448.

ACS

(1)
Rabelo Lopes, L.; Alves Moraes, F. A.; Costa Rodrigues, J. P.; de Oliveira, F. M.; de Oliveira Lopes, D.; Horta Pinto, F. C.; Aparecida Saldanha, A.; Cristina Soares, A. A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production. Rev. Colomb. Cienc. Quím. Farm. 2024, 53, 385-413.

ABNT

RABELO LOPES, L.; ALVES MORAES, F. A.; COSTA RODRIGUES, J. P.; DE OLIVEIRA, F. M.; DE OLIVEIRA LOPES, D.; HORTA PINTO, F. C.; APARECIDA SALDANHA, A.; CRISTINA SOARES, A. A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 53, n. 2, p. 385–413, 2024. DOI: 10.15446/rcciquifa.v53n2.114448. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114448. Acesso em: 15 jul. 2024.

Chicago

Rabelo Lopes, Livian, Fellipe Alexandre Alves Moraes, João Paulo Costa Rodrigues, Flávio Martins de Oliveira, Débora de Oliveira Lopes, Flávia Carmo Horta Pinto, Aline Aparecida Saldanha, y Adriana Cristina Soares. 2024. «A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production». Revista Colombiana De Ciencias Químico-Farmacéuticas 53 (2):385-413. https://doi.org/10.15446/rcciquifa.v53n2.114448.

Harvard

Rabelo Lopes, L., Alves Moraes, F. A., Costa Rodrigues, J. P., de Oliveira, F. M., de Oliveira Lopes, D., Horta Pinto, F. C., Aparecida Saldanha, A. y Cristina Soares, A. (2024) «A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production», Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), pp. 385–413. doi: 10.15446/rcciquifa.v53n2.114448.

IEEE

[1]
L. Rabelo Lopes, «A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production», Rev. Colomb. Cienc. Quím. Farm., vol. 53, n.º 2, pp. 385–413, jun. 2024.

MLA

Rabelo Lopes, L., F. A. Alves Moraes, J. P. Costa Rodrigues, F. M. de Oliveira, D. de Oliveira Lopes, F. C. Horta Pinto, A. Aparecida Saldanha, y A. Cristina Soares. «A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 53, n.º 2, junio de 2024, pp. 385-13, doi:10.15446/rcciquifa.v53n2.114448.

Turabian

Rabelo Lopes, Livian, Fellipe Alexandre Alves Moraes, João Paulo Costa Rodrigues, Flávio Martins de Oliveira, Débora de Oliveira Lopes, Flávia Carmo Horta Pinto, Aline Aparecida Saldanha, y Adriana Cristina Soares. «A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production». Revista Colombiana de Ciencias Químico-Farmacéuticas 53, no. 2 (junio 6, 2024): 385–413. Accedido julio 15, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/114448.

Vancouver

1.
Rabelo Lopes L, Alves Moraes FA, Costa Rodrigues JP, de Oliveira FM, de Oliveira Lopes D, Horta Pinto FC, Aparecida Saldanha A, Cristina Soares A. A repositioning approach: nitazoxanide inhibits inflammation and nociceptive response in mice models via a reduction of paw oedema, cellular migration and early TNF-α production. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 6 de junio de 2024 [citado 15 de julio de 2024];53(2):385-413. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114448

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

30

Descargas

Los datos de descargas todavía no están disponibles.