Publicado

2024-06-06

An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats

Un estudio predictivo in vivo e in silico sobre los efectos toxicológicos y moduladores de las sustancias de abuso sobre la calidad del esperma y la función testicular en ratas Wistar

Um estudo preditivo in vivo e in silico sobre os efeitos toxicológicos e moduladores de substâncias de abuso na qualidade do esperma e na função testicular em ratos Wistar

DOI:

https://doi.org/10.15446/rcciquifa.v53n2.114454

Palabras clave:

Wistar rats, Sperm Motility, Sodium Glutamate, Tramadol, Menthol, Follicle Stimulating Hormone (en)
ratas Wistar, motilidad de los espermatozoides, glutamato de sodio, tramadol, mentol, hormona folículo estimulante (es)
Ratos Wistar, motilidade espermática, glutamato de sódio, tramadol, mentol, hormônio folículo‑estimulante (pt)

Descargas

Autores/as

  • Charles Obiora Nwonuma Department of Biochemistry, College of Pure and Applied Sciences, Landmark University P.M.B. 1001, Omu Aran, Kwara State, Nigeria.
  • Adeola Oluwaseun Adedoyin Department of Biochemistry, College of Pure and Applied Sciences, Landmark University P.M.B. 1001, Omu Aran, Kwara State, Nigeria
  • Melody Onyemaka Department of Biochemistry, College of Pure and Applied Sciences, Landmark University P.M.B. 1001, Omu Aran, Kwara State, Nigeria
  • Emenike Irokanulo Department of Chemistry, University of Lagos, Lagos State, Nigeria
  • Omokolade Oluwaseyi Alejolowo Department of Biochemistry, College of Pure and Applied Sciences, Landmark University P.M.B. 1001, Omu Aran, Kwara State, Nigeria
  • Inemesit Asukwo Udofia Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University P.M.B. 1001, Omu Aran, Kwara State, Nigeria
  • Oluwafemi Adeleke Ojo Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB‑RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
  • Deborah A. Adah Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
  • Funmilayo Abimbola Okeniyi Department of Animal Science, Landmark University, Omu‑Aran, Nigeria
  • Omorefosa O. Osemwegie Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University P.M.B. 1001, Omu Aran, Kwara State, Nigeria.

Introduction: Some compounds like Opioids that are commonly used may affect the biological system in addition to having a high potential for addiction. Objective: This study assessed the effects of commonly misused substances on sperm quality and testicular function in Wistar rats. Material and Methods: Twenty-five Wistar rats weighing an average of 120 ± 0.1 g were randomly assigned to five treatment groups and were orally administered with water for the control, carbonated sugar drink, 150, 300, and 300 mg/kg body weight doses of menthol, monosodium glutamate, and tramadol respectively. The rats were euthanized 24 hours after the last day of the thirty-day treatment. Biochemical assays were on carried out the plasma and testicular homogenate. Results: There was a significant increase (p<0.05) in testosterone, FSH, LH, HDL, TG, phospholipids, glycogen, reduced glutathione concentration, sperm total count; %testicular weight change, and; there was also a significant decrease in the %tail defect, and %non-motile sperm across the treatment groups compared to the control. Contrary, there was a significant increase (p<0.05) in the testicular ACP and Na-K ATPases activities but MDA levels decreased significantly across treatment groups. The ouabain-α-ATPase complex’s binding energy is comparable to that of the α-ATPase complexes with tramadol, glucose, menthol, and MSG, respectively. Conclusion: The improved sperm quality and testicular function show that these compounds were not harmful to the reproductive functions of Wistar rats. The docking analysis corroborated the effects of ATPase activity modulation on sperm motility.

Introducción: Algunos compuestos como los opioides, que se usan comúnmente, pueden afectar el sistema biológico, además de tener un alto potencial de adicción. Objetivo: Este estudio evaluó los efectos de sustancias comúnmente utilizadas indebidamente sobre la calidad del esperma y la función testicular en ratas Wistar. Material y métodos: Veinticinco ratas Wistar con un peso promedio de 120 ± 0,1 g fueron asignadas aleatoriamente a cinco grupos de tratamiento y se les administró por vía oral, agua para el control, bebida azucarada carbonatada, dosis de 150, 300 y 300 mg/ kg de peso corporal de mentol, glutamato monosódico y tramadol, respectivamente. Las ratas fueron sacrificadas 24 horas después del último día del tratamiento de treinta días. Se realizaron ensayos bioquímicos sobre el plasma y el homogeneizado testicular. Resultados: Hubo aumento significativo (p<0,05) en testosterona, FSH, LH, HDL, TG, fosfolípidos, glucógeno, reducción de la concentración de glutatión, recuento total de espermatozoides, % de cambio de peso testicular, y también hubo una disminución significativa en el porcentaje de defectos en la cola y en el porcentaje de espermatozoides no móviles en los grupos de tratamiento en comparación con el control. Por el contrario, hubo un aumento significativo (p<0,05) en las actividades testiculares de ACP y Na-K ATPasas, pero los niveles de MDA disminuyeron significativamente en todos los grupos de tratamiento. La energía de unión del complejo ouabaína-α-ATPasa es comparable a la de los complejos α-ATPasa con tramadol, glucosa, mentol y glutamato monosódico, respectivamente. Conclusión: La mejora de la calidad del esperma y la función testicular muestran que estos compuestos no fueron perjudiciales para las funciones reproductivas de las ratas Wistar. El análisis de acoplamiento corroboró los efectos de la modulación de la actividad de la ATPasa sobre la motilidad de los espermatozoides.

Introdução: Alguns compostos como os opioides, comumente utilizados, podem afetar o sistema biológico, além de apresentarem alto potencial de dependência. Objetivo: Este estudo avaliou os efeitos de substâncias comumente mal utilizadas na qualidade do esperma e na função testicular em ratos Wistar. Material e métodos: Vinte e cinco ratos Wistar com peso médio de 120 ± 0,1 g foram distribuídos aleatoriamente em cinco grupos de tratamento e receberam por via oral água para controle, bebida gaseificada açucarada, doses de 150, 300 e 300 mg/kg de peso corporal de mentol, glutamato monossódico e tramadol, respectivamente. Os ratos foram sacrificados 24 horas após o último dia do tratamento de trinta dias. Ensaios bioquímicos foram realizados em plasma e homogeneizado testicular. Resultados: Houve aumento significativo (p<0,05) de testosterona, FSH, LH, HDL, TG, fosfolipídios, glicogênio, redução na concentração de glutationa, contagem total de espermatozoides, % de alteração no peso testicular, e também houve diminuição significativa de a porcentagem de defeitos na cauda e a porcentagem de espermatozoides imóveis nos grupos de tratamento em comparação com o controle. Em contraste, houve um aumento significativo (p<0,05) nas atividades testiculares de ACP e Na-K ATPase, mas os níveis de MDA diminuíram significativamente em todos os grupos de tratamento. A energia de ligação do complexo ouabaína-α-ATPase é comparável à dos complexos α-ATPase com tramadol, glicose, mentol e glutamato monossódico, respectivamente. Conclusão: A melhoria da qualidade espermática e da função testicular mostram que estes compostos não foram prejudiciais às funções reprodutivas de ratos Wistar. A análise de docking corroborou os efeitos da modulação da atividade da ATPase na motilidade espermática.

Referencias

S. Crowe, M. Utley, A. Costello, C. Pagel, How many births in sub‑Saharan Africa and South Asia will not be attended by a skilled birth attendant between 2011 and 2015? BMC Pregnancy and Childbirth, 12, 4 (2012). Doi: https://doi.org/10.1186/1471‑2393‑12‑4

T.B. Hayes, L.L. Anderson, VR. Beasley, S.R. de Solla, T. Iguchi, H. Ingraham, P. Kestemont, J. Kniewald, Z. Kniewald, V.S. Langlois, et al., Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes, The Journal of Steroid Biochemistry and Molecular Biology, 127(1‑2), 64‑73 (2011). Doi: https://doi.org/10.1016/j.jsbmb.2011.03.015

L. Peiris, H. Moore, Evaluation of effects of 1, 3‑dinitrobenzene on sperm motility of hamster using computer assisted semen analysis (CASA), Asian Journal of Andrology, 3(2), 109‑114 (2001).

S.E. Lewis, J.M. Moohan, W. Thompson, Effects of pentoxifylline on human sperm motility in normospermic individuals using computer‑assisted analysis, Fertility and Sterility, 59(2), 418‑423 (1993). Doi: https://doi.org/10.1016/s0015‑0282(16)55708‑2

D.M.I.H. Dissanayake, W.L.R. Keerthirathna, L.D.C. Peiris, Male infertility problem: A contemporary review on present status and future perspective, Gender and the Genome, 3, 1‑7 (2019). Doi: https://doi.org/10.1177/2470289719868240

J. McConnell, Abnormalities in sperm motility: techniques of evaluation and treatment, in: L.I. Lipshultz, S.S. Howards (editors), Infertility in the male, 3rd ed., Mosby Publications, New York (NY), 1997, pp. 249‑267.

G.P. Toth, J.A. Stober, H. Zenick, E.J. Read, S.A. Christ, M.K. Smith, Correlation of sperm motion parameters with fertility in rats treated subchronically with epichlorohydrin, Journal of Andrology, 12(1), 54‑61 (1991). Doi: https://doi.org/10.1002/j.1939‑4640.1991.tb00215.x

R. Singer, M. Ben‑Bassat, Z. Malik, M. Sagiv, A. Ravid, B. Shohat, E. Livni, T. Mamon, E. Segenreich, C. Servadio, Oligozoospermia, asthenozoospermia, and sperm abnormalities in ex‑addict to heroin, morphine, and hashish, Archives of Andrology, 16(2), 167‑174 (1986). Doi: https://doi.org/10.3109/01485018608986938

C. Vuong, S.H.M Van Uum, L.E. O’Dell, K. Lutfy, T.C. Friedman, The effects of opioids and opioid analogs on animal and human endocrine systems, Endocrine Reviews, 31(1), 98‑132 (2010). Doi: https://doi.org/10.1210/er.2009‑0009

E. Agirregoitia, A. Valdivia, A. Carracedo, L. Casis, J. Gil, N. Subiran, C. Ochoa, J. Irazusta, Expression and localization of δ‑, κ‑, and μ‑opioid receptors in human spermatozoa and implications for sperm motility, The Journal of Clinical Endocrinology & Metabolism, 91(12), 4969‑4975 (2006). Doi: https://doi.org/10.1210/jc.2006‑0599

N. Subirán, L. Casis, J. Irazusta, Regulation of male fertility by the opioid system, Molecular Medicine, 17(7), 846‑853 (2011). Doi: https://doi.org/10.2119/molmed.2010.00268

T.J. Cicero, L.A. Davis, M.C. LaRegina, E.R. Meyer, M.S. Schlegel, Chronic opiate exposure in the male rat adversely affects fertility, Pharmacology Biochemistry and Behavior, 72(1‑2), 157‑163 (2002). Doi: https://doi.org/10.1016/S0091‑3057(01)00751‑1

H.A. Shouip, Tramadol synthesis and mechanism of action, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Arish, North Sinai, Egypt, 2015.

R.B. Raffa, H. Buschmann, T. Christoph, G. Eichenbaum, W. Englberger, C.M. Flores, T. Hertrampf, B. Kögel, K. Schiene, W. Straßburger, R. Terlinden, T.M. Tzschentke, Mechanistic and functional differentiation of tapentadol and tramadol, Expert Opinion on Pharmacotherapy, 13(10), 1437‑1449 (2012). Doi: https://doi.org/10.1517/14656566.2012.696097

S. Naveed, L. Jaweed, UV spectrophotometric assay of Ketoconazole oral formulations. American Journal of Biology and Life Sciences, 2(5), 108‑111 (2014). URL: http://www.openscienceonline.com/journal/archive2?journalId=704&paperId=795

S. Grond, A. Sablotzki, Clinical pharmacology of tramadol, Clinical Pharma‑ cokinetics, 43(13), 879‑923 (2004). Doi: https://doi.org/10.2165/00003088‑200443130‑00004

S. Alizadeh, M. Hasanzadeh, A. Irandoost, Tramadol, methadone and buprenorphine‑AuNPs kit based on chemometrics tools and software, Sensor Letters, 18(3), 227‑235 (2020). Doi: https://doi.org/10.1166/sl.2020.4212

A.V. Ciurea, F.V. Edu, Probleme de nocivitate în alimentele uzuale, Galaxia Gutenberg, Barcelona, 2011.

R.K. Bush, S.L. Taylor, Reactions to food and drug additives, in: N.F. Adkinson, Jr, B.S. Bochner, A. Wesley‑Burks, W.W. Busse, S.T. Holgate, R.F. Lemanske, Jr., R.E. O’Hehir (editors), Middleton’s Allergy: Principles and Practice, 8th ed., Saunders‑Elsevier Inc., 2014, pp. 1340‑1356. Doi: https://doi.org/10.1016/B978‑0‑323‑08593‑9.00083‑8

A. Buzescu, A.N. Cristea, L. Avram, C. Chiriţă, The addictive behaviour induced by food monosodium glutamate: Experimental study, Romanian Journal of Medical Practice, 8(4), 229‑233 (2013). URL: https://rjmp.com.ro/articles/2013.4/PM_Nr‑4_2013_Art‑4.pdf

S. Nakanishi, Molecular diversity of glutamate receptors and implications for brain function, Science, 258(5082), 597‑603 (1992). Doi: https://doi.org/10.1126/science.1329206

N. Galeotti, L.D.C. Mannelli, G. Mazzanti, A. Bartolini, C. Ghelardini, Menthol: A natural analgesic compound, Neuroscience Letters, 322(3), 145‑148 (2002). Doi: https://doi.org/10.1016/S0304‑3940(01)02527‑7

G. Haeseler, D. Maue, J. Grosskreutz, J. Bufler, B. Nentwig, S. Piepenbrock, R. Dengler, M. Leuwer, Voltage‑dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol, European Journal of Anaesthesiology, 19(8), 571‑579 (2002). Doi: https://doi.org/10.1017/S0265021502000923

E.W. Dumbili, I.D. Ebuenyi, K.C. Ugoeze, New psychoactive substances in Nigeria: A call for more research in Africa, Emerging Trends in Drugs, Addictions, and Health, 1, 100008 (2021). Doi: https://doi.org/10.1016/j.etdah.2021.100008

T.G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H.W.G. Baker, H.M. Behre, T.B. Haugen, T. Kruger, C. Wang, M.T. Mbizvo, K.M. Vogelsong, World Health Organization reference values for human semen characteristics, Human Reproduction Update, 16(3), 231‑245 (2010). Doi: https://doi.org/10.1093/humupd/dmp048

K. Yokoi, Z. Mayi, Organ apoptosis with cytotoxic drugs, Toxicology, 290, 78‑85 (2004).

M. Sönmez, G. Türk, A. Yüce, The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats, Theriogenology, 63(7), 2063‑2072 (2005). Doi: https://doi.org/10.1016/j.theriogenology.2004.10.003

M.A.u. Azim, M. Hasan, I.H. Ansari, F. Nasreen, Chemiluminescence immunoassay: Basic mechanism and applications, Bangladesh Journal of Nuclear Medicine, 18(2), 171‑178 (2015). Doi: https://doi.org/10.3329/bjnm.v18i2.35240

A.G. Gornall, C.J. Bardawill, M.M. David, Determination of serum proteins by means of the biuret reaction, Journal of Biological Chemistry, 177(2), 751‑766 (1949). Doi: https://doi.org/10.1016/S0021‑9258(18)57021‑6

P.J. Wright, P.D. Leathwood, D.T. Plummer, Enzymes in rat urine: alkaline phosphatase, Enzymologia, 42(4), 317‑327 (1972).

H.P. Misra, I. Fridovich, The generation of superoxide radical during the autoxidation of hemoglobin, Journal of Biological Chemistry, 247(21), 6960‑ 6962 (1972). Doi: https://doi.org/10.1016/S0021‑9258(19)44679‑6

D.J. Jollow, J.R. Mitchell, N. Zampaglione, J.R. Gillette, Bromobenzene‑induced liver necrosis. Protective role of glutathione and evidence for 3,4‑bromobenzene oxide as the hepatotoxic metabolite, Pharmacology, 11(3), 151‑169 (1974). Doi: https://doi.org/10.1159/000136485

K. Satoh, Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method, Clinica Chimica Acta, 90(1), 37‑43 (1978). Doi: https://doi.org/10.1016/0009‑8981(78)90081‑5

G.L. Ellman, K.D. Courtney, V. Andres Jr., R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, 7(2), 88‑95 (1961). Doi: https://doi.org/10.1016/0006‑2952(61)90145‑9

P. Ronner, P. Gazzotti, E. Carafoli, A lipid requirement for the (Ca2+ + Mg2+)‑ activated ATPase of erythrocyte membranes, Archives of Biochemistry and Biophysics, 179(2), 578‑583 (1977). Doi: https://doi.org/10.1016/0003‑9861(77)90146‑1

C.O. Bewaji, O.O. Olorunsogo, E.A. Bababunmi, Comparison of the membrane‑ bound (Ca2+ + Mg2+)‑ATPase in erythrocyte ghosts from some mammalian species, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 82(1), 117‑122 (1985). Doi: https://doi.org/10.1016/0305‑0491(85)90138‑5

J.C.M. Stewart, Colorimetric determination of phospholipids with ammonium ferrothiocyanate, Analytical Biochemistry, 104(1), 10‑14 (1980). Doi: https://doi.org/10.1016/0003‑2697(80)90269‑9

A. Kemp, A.J.M.K. Van Heijningen, A colorimetric micro‑method for the determination of glycogen in tissues, Biochemical Journal, 56(4), 646‑648 (1954). Doi: https://doi.org/10.1042/bj0560646

R. Ilavarasan, M. Mallika, S. Venkataraman, Anti‑inflammatory and free radical scavenging activity of Ricinus communis root extract, Journal of Ethnopharmacology, 103(3), 478‑480 (2006). Doi: https://doi.org/10.1016/j.jep.2005.07.029

L.I. Gidez, G.J. Miller, M. Burstein, S. Slagle, H.A. Eder, Separation and quantitation of subclasses of human plasma high density lipoproteins by a simple precipitation procedure, Journal of Lipid Research, 23(8), 1206‑1223 (1982). Doi: https://doi.org/10.1016/S0022‑2275(20)38059‑7

J. Folch, M. Lees, G.H. Sloane‑Stanley, A simple method for the isolation and purification of total lipids from animal tissues, Journal of Biological Chemistry, 226(1), 497‑509 (1957). Doi: https://doi.org/10.1016/S0021‑9258(18)64849‑5

S. Ramakrishnan, A.V. Rao, Indirect assessment of hydroxymethylglutaryl‑CoA reductase (NADPH) activity in liver tissue, Clinical Chemistry, 21(10), 1523‑ 1525 (1975). Doi: https://doi.org/10.1093/clinchem/21.10.1523

O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, 31(2), 455‑461 (2010). Doi: https://doi.org/10.1002/jcc.21334

S. Dallakyan, A.J. Olson, Small‑molecule library screening by docking with PyRx, in: J. Hempel, C. Williams, C. Hong (editors), Chemical Biology. Methods in Molecular Biology, vol 1263, Humana Press, New York (NY), 2015, pp. 243‑ 250. Doi: https://doi.org/10.1007/978‑1‑4939‑2269‑7_19

T.D. Hewitson, I.A. Darby, Histology protocols, Humana Press, Springer, 2010. Doi: https://doi.org/10.1007/978‑1‑60327‑345‑9

X. Peng, C. Dai, Q. Liu, J. Li, J. Qiu, Curcumin attenuates on carbon tetrachloride‑induced acute liver injury in mice via modulation of the Nrf2/ HO‑1 and TGF‑β1/Smad3 pathway, Molecules, 23(1), 215 (2018). Doi: https://doi.org/10.3390/molecules23010215

R.A. Hess, D.J. Schaeffer, V.P. Eroschenko, J.E. Keen, Frequency of the stages in the cycle of the seminiferous epithelium in the rat, Biology of Reproduction, 43(3), 517‑524 (1990). Doi: https://doi.org/10.1095/biolreprod43.3.517

T. Lord, B. Nixon, Metabolic changes accompanying spermatogonial stem cell differentiation, Developmental Cell, 52(4), 399‑411 (2020). Doi: https://doi.org/10.1016/j.devcel.2020.01.014

C.‑H. Wong, C.Y. Cheng, The blood‑testis barrier: its biology, regulation, and physiological role in spermatogenesis, Current Topics in Developmental Biology, 71, 263‑296 (2005). Doi: https://doi.org/10.1016/S0070‑2153(05)71008‑5

M.F. Riera, S.B. Meroni, H.F. Schteingart, E.H. Pellizzari, S.B. Cigorraga, Regulation of lactate production and glucose transport as well as of glucose transporter 1 and lactate dehydrogenase A mRNA levels by basic fibroblast growth factor in rat Sertoli cells, Journal of Endocrinology, 173(2), 335‑343 (2002). Doi: https://doi.org/10.1677/joe.0.1730335

M.F. Riera, M.N. Galardo, E.H. Pellizzari, S.B. Meroni, S.B. Cigorraga, Molecular mechanisms involved in Sertoli cell adaptation to glucose deprivation, American Journal of Physiology: Endocrinology and Metabolism, 297(4), E907‑E914 (2009). Doi: https://doi.org/10.1152/ajpendo.00235.2009

A.R. Means, J.R. Dedman, J.S. Tash, D.J. Tindall, M. van Sickle, M.J. Welsh, Regulation of the testis Sertoli cell by follicle stimulating hormone, Annual Review of Physiology, 42, 59‑70 (1980). Doi: https://doi.org/10.1146/annurev.ph.42.030180.000423

J.L. Fakunding, D.J. Tindall, J.R. Dedman, C.R. Mena, A.R. Means, Biochemical actions of follice‑stimulating hormone in the Sertoli cell of the rat testis, Endocrinology, 98(2), 392‑402 (1976). Doi: https://doi.org/10.1210/endo‑98‑2‑392

A.R. Means, J.L. Fakunding, C. Huckins, D.J. Tindall, R. Vitale, Follicle‑ stimulating hormone, the Sertoli cell, and spermatogenesis, in: R.O. Greep (editor), Proceedings of the 1975 Laurentian Hormone Conference, Volume 32 in Recent Progress in Hormone Research, Academic Press, 1976, pp. 477‑527. Doi: https://doi.org/10.1016/b978‑0‑12‑571132‑6.50027‑0

P.J. O’Shaughnessy, Hormonal control of germ cell development and spermatogenesis, Seminars in Cell & Developmental Biology, 29, 55‑65 (2014). Doi: https://doi.org/10.1016/j.semcdb.2014.02.010

R.I. McLachlan, L. O’Donnell, S.J. Meachem, P.G. Stanton, D.M. De Kretser, K. Pratis, D.M. Robertson, Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man, Recent Progress in Hormone Research, 57, 149‑179 (2002). Doi: https://doi.org/10.1210/rp.57.1.149

T.L. Thompson, W.E. Berndtson, Testicular weight, Sertoli cell number, daily sperm production, and sperm output of sexually mature rabbits after neonatal or prepubertal hemicastration, Biology of Reproduction, 48(5), 952‑957 (1993). Doi: https://doi.org/10.1095/biolreprod48.5.952

M. Sigman, A. Zini, Semen analysis and sperm function assays: what do they mean? Seminars in Reproductive Medicine, 27(2), 115‑123 (2009). Doi: https://doi.org/10.1055/s‑0029‑1202300

K. Coetzee, T.F. Kruge, C.J. Lombard, Predictive value of normal sperm morphology: a structured literature review, Human Reproduction Update, 4(1), 73‑82 (1998). Doi: https://doi.org/10.1093/humupd/4.1.73

J.N. Robinson, G.M. Lockwood, A. Dokras, D.M. Egan, S.C. Nicholson, C. Ross, D.H. Barlow, Does isolated teratozoospermia affect performance in in‑vitro fertilization and embryo transfer? Human Reproduction, 9(5), 870‑874 (1994). Doi: https://doi.org/10.1093/oxfordjournals.humrep.a138608

M.M. Biljan, C.T. Taylor, P.R. Manasse, E.C. Joughin, C.R. Kingsland, D.I. Lewis‑Jones, Evaluation of different sperm function tests as screening methods for male fertilization potential‑‑the value of the sperm migration test, Fertility and Sterility, 62(3), 591‑598 (1994). Doi: https://doi.org/10.1016/s0015‑0282(16)56951‑9

D.R. Grow, S. Oehninger, H.J. Seltman, J.P. Toner, R.J. Swanson, T.F. Kruger, S.J. Muasher, Sperm morphology as diagnosed by strict criteria: probing the impact of teratozoospermia on fertilization rate and pregnancy outcome in a large in vitro fertilization population, Fertility and Sterility, 62(3), 559‑567 (1994). Doi: https://doi.org/10.1016/s0015‑0282(16)56946‑5

C.O. Nwonuma, V.C. Nwatu, G. Mostafa‑Hedeab, O.S. Adeyemi, O.O. Alejolowo, O.A. Ojo, S.A. Adah, O.J. Awakan, C.E. Okolie, N.T. Asogwa, I.A. Udofia, G.O. Egharevba, N.H. Aljarba, S. Alkahtani, G. El‑Saber‑Batiha, Experimental validation and molecular docking to explore the active components of cannabis in testicular function and sperm quality modulations in rats, BMC Complementary Medicine and Therapies, 22(1), 227 (2022). Doi: https://doi.org/10.1186/s12906‑022‑03704‑z

G. Blanco, R.W. Mercer, Isozymesofthe Na‑K‑ATPase: heterogeneityinstructure, diversity in function, American Journal of Physiology – Renal Physiology, 275(5), F633‑F650 (1998). Doi: https://doi.org/10.1152/ajprenal.1998.275.5.F633

J.B. Lingrel, T. Kuntzweiler, Na+,K(+)‑ATPase, The Journal of Biological Chemistry, 269(31), 19659‑19662 (1994). URL: https://www.jbc.org/article/S0021‑9258(17)32067‑7/pdf

K.J. Sweadner, Isozymes of the Na+/K+‑ATPase, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 988(2), 185‑220 (1989). Doi: https://doi.org/10.1016/0304‑4157(89)90019‑1

A.L. Woo, P.F. James, PF, J.B. Lingrel, Sperm motility is dependent on a unique isoform of the Na,K‑ATPase, Journal of Biological Chemistry, 275(27), 20693‑ 20699 (2000). Doi: https://doi.org/10.1074/jbc.M002323200

M.O.R. Borges, M.L.C. Abreu, C.S. Porto, M.C.W. Avellar, Characterization of muscarinic acetylcholine receptor in rat Sertoli cells, Endocrinology, 142(11), 4701‑4710 (2001). Doi: https://doi.org/10.1210/endo.142.11.8465

C. Bray, J.‑H. Son, P. Kumar, S. Meizel, Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility, Biology of Reproduction, 73(4), 807‑814 (2005). Doi: https://doi.org/10.1095/biolreprod.105.042184

J.T. Gwynne, D. Mahaffee, H.B. Brewer, Jr, R.L. Ney, Adrenal cholesterol uptake from plasma lipoproteins: Regulation by corticotropin, Proceedings of the National Academy of Sciences of the United States of America, 73(12), 4329‑4333 (1976). Doi: https://doi.org/10.1073/pnas.73.12.4329

Y. Chen, F.B. Kraemer, G.M. Reaven, Identification of specific high density lipoprotein‑binding sites in rat testis and regulation of binding by human chorionic gonadotropin, Journal of Biological Chemistry, 255(19), 9162‑9167 (1980). Doi: https://doi.org/10.1016/S0021‑9258(19)70541‑9

J.F. Henderson, Studies on fatty liver induction by 4‑aminopyrazolopyrimidine, Journal of Lipid Research, 4(1), 68‑74 (1963). Doi: https://doi.org/10.1016/S0022‑2275(20)40368‑2

T. Shiff, P. Roheim, H. Eder, Effects of high sucrose diets and 4‑aminopyrazolopyrimidine on serum lipids and lipoproteins in the rat, Journal of Lipid Research, 12(5), 596‑603 (1971). Doi: https://doi.org/10.1016/S0022‑2275(20)39479‑7

F.‑Z. El‑Hajjaji, A. Oumeddour, A.J.C. Pommier, A. Ouvrier, E. Viennois, J. Dufour, F. Caira, J.R. Drevet, D.H. Volle, S. Baron, F. Saez, J.‑M.A. Lobaccaro, Liver X receptors, lipids and their reproductive secrets in the male, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(8), 974‑981 (2011). Doi: https://doi.org/10.1016/j.bbadis.2011.02.004

W.‑J. Shen, S. Azhar, F.B. Kraemer, Lipid droplets and steroidogenic cells, Experimental Cell Research, 340(2), 209‑214 (2016). Doi: https://doi.org/10.1016/j.yexcr.2015.11.024

R.G. Parton, J.F. Hancock, Lipid rafts and plasma membrane microorganization: insights from Ras, Trends in Cell Biology, 14(3), 141‑147 (2004). Doi: https://doi.org/10.1016/j.tcb.2004.02.001

S. Yokoyama, Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1529(1‑3), 231‑244 (2000). Doi: https://doi.org/10.1016/s1388‑1981(00)00152‑9

O. Kabbaj, C. Holm, M.L. Vitale, R.‑M. Pelletier, Expression, activity, and subcellular localization of testicular hormone‑sensitive lipase during postnatal development in the guinea pig, Biology of Reproduction, 65(2), 601‑612 (2001). Doi: https://doi.org/10.1095/biolreprod65.2.601

O. Kabbaj, S.R. Yoon, C. Holm, J. Rose, M.L. Vitale, R.‑M. Pelletier, Relationship of the hormone‑sensitive lipase‑mediated modulation of cholesterol metabolism in individual compartments of the testis to serum pituitary hormone and testosterone concentrations in a seasonal breeder, the mink (Mustela vison), Biology of Reproduction, 68(3), 722‑734 (2003). Doi: https://doi.org/10.1095/biolreprod.102.008169

L. Sèdes, L. Thirouard, S. Maqdasy, M. Garcia, F. Caira, J.‑M.A. Lobaccaro, C. Beaudoin, D.H. Volle, Cholesterol: a gatekeeper of male fertility? Frontiers in Endocrinology, 9, 369 (2018). Doi: https://doi.org/10.3389/fendo.2018.00369

F. Villarroel‑Espíndola, R. Maldonado, H. Mancilla, K. vander Stelt, A.I. Acuña, A. Covarrubias, C. López, C. Angulo, M.A. Castro, J.C. Slebe, J. Durán, M. García‑Rocha, J.J. Guinovart, I.I. Concha, Muscle glycogen synthase isoform is responsible for testicular glycogen synthesis: Glycogen overproduction induces apoptosis in male germ cells, Journal of Cellular Biochemistry, 114(7), 1653‑ 1664 (2013). Doi: https://doi.org/10.1002/jcb.24507

F. Odet, S.A. Gabel, J. Williams, R.E. London, E. Goldberg, E.M. Eddy, Lactate dehydrogenase C and energy metabolism in mouse sperm, Biology of Reproduction, 85(3), 556‑564 (2011). Doi: https://doi.org/10.1095/biolreprod.111.091546

M. Dodo, H. Kitamura, H. Shima, D. Saigusa, S.M. Wati, N. Ota, F. Katsuoka, H. Chiba, H. Okae, T. Arima, K. Igarashi, T. Koseki, H. Sekine, H. Motohashi, Lactate dehydrogenase C is required for the protein expression of a sperm‑ specific isoform of lactate dehydrogenase A, The Journal of Biochemistry, 165(4), 323‑334 (2019). Doi: https://doi.org/10.1093/jb/mvy108

B. Jegou, C. Cudicini, E. Gomez, J.P. Stephan, Interleukin‑1, interleukin‑6 and the germ cell‑Sertoli cell cross‑talk, Reproduction, Fertility and Development, 7(4), 723‑730 (1995). Doi: https://doi.org/10.1071/rd9950723

D.B. Hales, Leydig cell‑macrophage interactions: an overview, in: A.H. Payne, M.P. Hardy, L.D. Russell (editors), The Leyding Cell, Cache River Press, Vienna (IL), 1996, pp. 451‑465.

K. Del Punta, E.H. Charreau, O.P. Pignataro, Nitric oxide inhibits Leydig cell steroidogenesis, Endocrinology, 137(12), 5337‑5343 (1996). Doi: https://doi.org/10.1210/endo.137.12.8940355

M.K. O’Bryan, S. Schlatt, O. Gerdprasert, D.J. Phillips, D.M. de Kretser, M.P. Hedger, Inducible nitric oxide synthase in the rat testis: evidence for potential roles in both normal function and inflammation‑mediated infertility, Biology of Reproduction, 63(5), 1285‑1293 (2000). Doi: https://doi.org/10.1095/biolreprod63.5.1285

J. Dupont, M. Reverchon, M.J. Bertoldo, P. Froment, Nutritional signals and reproduction, Molecular and Cellular Endocrinology, 382(1), 527‑537 (2014). Doi: https://doi.org/10.1016/j.mce.2013.09.028

D.C. Wathes, D.R.E. Abayasekara, R.J. Aitken, Polyunsaturated fatty acids in male and female reproduction, Biology of Reproduction, 77(2), 190‑201 (2007). Doi: https://doi.org/10.1095/biolreprod.107.060558

D.R. Tocher, Metabolism and functions of lipids and fatty acids in teleost fish, Reviews in Fisheries Science, 11(2), 107‑184 (2003). Doi: https://doi.org/10.1080/713610925

J.T. Davis, R.B. Bridges, J.G. Coniglio, Changes in lipid composition of the maturing rat testis, Biochemical Journal, 98(1), 342‑346 (1966). Doi: https://doi.org/10.1042/bj0980342

A. Lenzi, M. Picardo, L. Gandini, F. Dondero, Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy, Human Reproduction Update, 2(3), 246‑ 256 (1996). Doi: https://doi.org/10.1093/humupd/2.3.246

D.S. Lin, M. Neuringer, W.E. Connor, Selective changes of docosahexaenoic acid‑containing phospholipid molecular species in monkey testis during puberty, Journal of Lipid Research, 45(3), 529‑535 (2004). Doi: https://doi.org/10.1194/jlr.M300374‑JLR200

N.L. Cross, Phosphatidylcholine enhances the acrosomal responsiveness of human sperm, Journal of Andrology, 15(5), 484‑488 (1994). Doi: https://doi.org/10.1002/j.1939‑4640.1994.tb00484.x

J.P. Infante, V.A. Huszagh, Synthesis of highly unsaturated phosphatidylcholines in the development of sperm motility: a role for epididymal glycerol‑3‑ phosphorylcholine, Molecular and Cellular Biochemistry, 69(1), 3‑6 (1985). Doi: https://doi.org/10.1007/bf00225921

G.M. Oresti, J. García‑López, M.I. Aveldaño, J. del Mazo, Cell‑type‑specific regulation of genes involved in testicular lipid metabolism: fatty acid‑binding proteins, diacylglycerol acyltransferases, and perilipin 2, Reproduction, 146(5), 471‑480 (2013). Doi: https://doi.org/10.1530/rep‑13‑0199

R. Lehner, A. Kuksis, Biosynthesis of triacylglycerols, Progress in Lipid Research, 35(2), 169‑201 (1996). Doi: https://doi.org/10.1016/0163‑7827(96)00005‑7

X. Liu, F. Liu, In‑depth mapping of human testicular and epididymal proteins and their functional association with spermatozoa, Molecular Medicine Reports, 12(1), 173‑179 (2015). Doi: https://doi.org/10.3892/mmr.2015.3435

J. Parodi, Motility, viability, and calcium in the sperm cells, Systems Biology in Reproductive Medicine, 60(2), 65‑71 (2014). Doi: https://doi.org/10.3109/19396368.2013.869273

S.C. Sikka, Relative impact of oxidative stress on male reproductive function, Current Medicinal Chemistry, 8(7), 851‑862 (2001). Doi: https://doi.org/10.2174/0929867013373039

G. Collodel, M.G. Federico, M. Geminiani, S. Martini, C. Bonechi, C. Rossi, N. Figura, E. Moretti, Effect of trans‑resveratrol on induced oxidative stress in human sperm and in rat germinal cells, Reproductive Toxicology, 31(2), 239‑246 (2011). Doi: https://doi.org/10.1016/j.reprotox.2010.11.010

E.O. Farombi, S.O. Abarikwu, A.C. Adesiyan, T.O. Oyejola, Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats, Andrologia, 45(4), 256‑265 (2013). Doi: https://doi.org/10.1111/and.12001

C.T. Leong, U.J.A. D’Souza, M. Iqbal, Z.A. Mustapha, Lipid peroxidation and decline in antioxidant status as one of the toxicity measures of diazinon in the testis, Redox Report, 18(4), 155‑164 (2013). Doi: https://doi.org/10.1179/1351000213Y.0000000054

C.O. Madu, Y. Lu, Novel diagnostic biomarkers for prostate cancer, Journal of Cancer, 1, 150‑177 (2010). Doi: https://doi.org/10.7150/jca.1.150

J.‑C. Lu, F. Chen, H.‑R. Xu, Y.‑F. Huang, N.‑Q. Lu, Preliminary investigations on the standardization and quality control for the determination of acid phosphatase activity in seminal plasma, Clinica Chimica Acta, 375(1‑2), 76‑81 (2007). Doi: https://doi.org/10.1016/j.cca.2006.06.005

N.J. Bolton, R. Lahtonen, P. Vihko, M. Kontturi, R. Vihko, Androgens and prostate‑specific acid phosphatase in whole tissue and in separated epithelium from human benign prostatic hypertrophic glands, The Prostate, 2(4), 409‑416 (1981). Doi: https://doi.org/10.1002/pros.2990020408

S.M. Girgis, M.K. Deinasury, M. El‑Kodary, B. Metawy, M.M. Moussa, N. Momen, S.M. Saleh, Diagnostic value of determination of acid and alkaline phosphatase levels in the seminal plasma of infertile males, Andrologia, 13(4), 330‑334 (1981). Doi: https://doi.org/10.1111/j.1439‑0272.1981.tb00057.x

J.P. Kavanagh, C. Darby, C.B. Costello, The response of seven prostatic fluid components to prostatic disease, International Journal of Andrology, 5(5), 487‑ 496 (1982). Doi: https://doi.org/10.1111/j.1365‑2605.1982.tb00280.x

T. Mann, Biochemistry of stallion semen, Journal of Reproduction and Fertility. Supplement, 23, 47‑52 (1975).

T. Mann, The biochemistry of semen and of the male reproductive tract, John Wiley & Sons, New York (NY), 1964.

F.C.M. Alexander, R. Zemjanis, E.F. Graham, M.L. Schmehl, Semen characteristics and chemistry from bulls before and after seminal vesiculectomy and after vasectomy, Journal of Dairy Science, 54(10), 1530‑1535 (1971). Doi: https://doi.org/10.3168/jds.S0022‑0302(71)86059‑9

P.N. Olson, Clinical approach for evaluating dogs with azoospermia or aspermia, Veterinary Clinics of North America: Small Animal Practice, 21(3), 591‑608 (1991). Doi: https://doi.org/10.1016/s0195‑5616(91)50062‑0

T.L. Blanchard, L. Johnson, D.D. Varner, S.L. Rigby, S.P. Brinsko, C.C. Love, C. Miller, Low daily sperm output per ml of testis as a diagnostic criteria for testicular degeneration in stallions, Journal of Equine Veterinary Science, 21(1), 11‑35 (2001). Doi: https://doi.org/10.1016/S0737‑0806(01)70228‑6

T.L. Blanchard, L. Johnson, Increased germ cell degeneration and reduced germ cell:Sertoli cell ratio in stallions with low sperm production, Theriogenology, 47(3), 665‑677 (1997). Doi: https://doi.org/10.1016/s0093‑691x(97)00025‑3

A.J. Ross, K.G. Waymire, J.E. Moss, A.F. Parlow, M.K. Skinner, L.D. Russell, G.R. MacGregor, Testicular degeneration in Bclw‑deficient mice, Nature Genetics, 18(3), 251‑256 (1998). Doi: https://doi.org/10.1038/ng0398‑251

R.K. Hussein, H.M. Elkhair, Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID‑19, Journal of Molecular Structure, 1231, 129979 (2021). Doi: https://doi.org/10.1016/j.molstruc.2021.129979

G. Munsamy, MES Soliman, Unveiling a new era in malaria therapeutics: A tailored molecular approach towards the design of plasmepsin IX inhibitors, The Protein Journal, 38(6), 616‑627 (2019). Doi: https://doi.org/10.1007/s10930‑019‑09871‑2

T. Ogawa, T. Furuhashi, A. Okazawa, R. Nakai, M. Nakazawa, T. Kind, O. Fiehn, S. Kanaya, M. Arita, D. Ohta, Exploration of polar lipid accumulation profiles in Euglena gracilis using LipidBlast, an MS/MS spectral library constructed in silico, Bioscience, Biotechnology, and Biochemistry, 78(1), 14‑18 (2014). Doi: https://doi.org/10.1080/09168451.2014.877826

J.L. Gregersen, D. Mattle, N.U. Fedosova, P. Nissen, L. Reinhard, Isolation, crystallization and crystal structure determination of bovine kidney Na+,K+‑ ATPase, Acta Crystallographica Section F: Structural Biology Communications, 72(Pt 4), 282‑287 (2016). Doi: https://doi.org/10.1107/s2053230x1600279x

Cómo citar

APA

Nwonuma, C. O., Adedoyin, A. O., Onyemaka, M., Irokanulo, E., Alejolowo, O. O., Udofia, I. A., Ojo, O. A., Adah, D. A., Okeniyi, F. A. y Osemwegie, O. O. (2024). An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), 513–551. https://doi.org/10.15446/rcciquifa.v53n2.114454

ACM

[1]
Nwonuma, C.O., Adedoyin, A.O., Onyemaka, M., Irokanulo, E., Alejolowo, O.O., Udofia, I.A., Ojo, O.A., Adah, D.A., Okeniyi, F.A. y Osemwegie, O.O. 2024. An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats. Revista Colombiana de Ciencias Químico-Farmacéuticas. 53, 2 (jun. 2024), 513–551. DOI:https://doi.org/10.15446/rcciquifa.v53n2.114454.

ACS

(1)
Nwonuma, C. O.; Adedoyin, A. O.; Onyemaka, M.; Irokanulo, E.; Alejolowo, O. O.; Udofia, I. A.; Ojo, O. A.; Adah, D. A.; Okeniyi, F. A.; Osemwegie, O. O. An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats. Rev. Colomb. Cienc. Quím. Farm. 2024, 53, 513-551.

ABNT

NWONUMA, C. O.; ADEDOYIN, A. O.; ONYEMAKA, M.; IROKANULO, E.; ALEJOLOWO, O. O.; UDOFIA, I. A.; OJO, O. A.; ADAH, D. A.; OKENIYI, F. A.; OSEMWEGIE, O. O. An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 53, n. 2, p. 513–551, 2024. DOI: 10.15446/rcciquifa.v53n2.114454. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114454. Acesso em: 15 ene. 2025.

Chicago

Nwonuma, Charles Obiora, Adeola Oluwaseun Adedoyin, Melody Onyemaka, Emenike Irokanulo, Omokolade Oluwaseyi Alejolowo, Inemesit Asukwo Udofia, Oluwafemi Adeleke Ojo, Deborah A. Adah, Funmilayo Abimbola Okeniyi, y Omorefosa O. Osemwegie. 2024. «An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats». Revista Colombiana De Ciencias Químico-Farmacéuticas 53 (2):513-51. https://doi.org/10.15446/rcciquifa.v53n2.114454.

Harvard

Nwonuma, C. O., Adedoyin, A. O., Onyemaka, M., Irokanulo, E., Alejolowo, O. O., Udofia, I. A., Ojo, O. A., Adah, D. A., Okeniyi, F. A. y Osemwegie, O. O. (2024) «An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats», Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), pp. 513–551. doi: 10.15446/rcciquifa.v53n2.114454.

IEEE

[1]
C. O. Nwonuma, «An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats», Rev. Colomb. Cienc. Quím. Farm., vol. 53, n.º 2, pp. 513–551, jun. 2024.

MLA

Nwonuma, C. O., A. O. Adedoyin, M. Onyemaka, E. Irokanulo, O. O. Alejolowo, I. A. Udofia, O. A. Ojo, D. A. Adah, F. A. Okeniyi, y O. O. Osemwegie. «An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 53, n.º 2, junio de 2024, pp. 513-51, doi:10.15446/rcciquifa.v53n2.114454.

Turabian

Nwonuma, Charles Obiora, Adeola Oluwaseun Adedoyin, Melody Onyemaka, Emenike Irokanulo, Omokolade Oluwaseyi Alejolowo, Inemesit Asukwo Udofia, Oluwafemi Adeleke Ojo, Deborah A. Adah, Funmilayo Abimbola Okeniyi, y Omorefosa O. Osemwegie. «An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats». Revista Colombiana de Ciencias Químico-Farmacéuticas 53, no. 2 (junio 6, 2024): 513–551. Accedido enero 15, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/114454.

Vancouver

1.
Nwonuma CO, Adedoyin AO, Onyemaka M, Irokanulo E, Alejolowo OO, Udofia IA, Ojo OA, Adah DA, Okeniyi FA, Osemwegie OO. An in vivo and in silico predictive study on the toxicological and modulatory effects of abused substances on sperm quality and testicular function in Wistar rats. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 6 de junio de 2024 [citado 15 de enero de 2025];53(2):513-51. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114454

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

110

Descargas

Los datos de descargas todavía no están disponibles.